• Title/Summary/Keyword: Bi$^{3+}$ doping

Search Result 82, Processing Time 0.044 seconds

A study on the color change switch and electrochemical doping of polythiophene (Polythiophene의 전기화학적 도핑과 변색 스위치에 관한 연구)

  • 구할본;김주승;김현철;김종욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.165-173
    • /
    • 1996
  • We prepared polythiophene and poly(3-methylthiophene) films, known as conducting polymer, by electrochemical method. Polythiophene and poly(3-methylthiophene) films were doped and undoped dopant for the studing the understanding of doping mechanism and possible application to the color change switch. We observed that the anodic, cathodic wave and absorption spectra were slightly changed during doping and undoping process in polythiophene. It shows that doping and undoping process were showed some difference by the appearance and disappearance of polaron and bi-polaron. In the relation of the peak of oxidative current density and potential sweep rate of cyclic voltammograms, the amount of dopant in polythiophene film was homogeneously increased at low scan rate. This also can be applied to the poly(3-methlythiophene).

  • PDF

Photocatalytic Decomposition of Rhodamine B over BiVO4 Doped with Samarium Ion (Sm 이온이 도핑된 BiVO4에서 로다민 B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.146-151
    • /
    • 2021
  • Pure and Sm ion doped BiVO4 catalysts were synthesized using a conventional hydrothermal method and characterized by XRD, DRS, SEM, and PL. We also examined the activity of these materials on the photocatalytic decomposition of rhodamine B under visible light irradiation. The doping of Sm ion into BiVO4 catalyst changed the ms-BiVO4 crystal structure into the tz-BiVO4 crystal structure in the low synthesis temperature. Light absorption analysis using DRS showed that all the catalysts displayed strong absorption in the visible range of the electromagnetic spectrum regardless of Sm ion doping. In addition, an amorphous morphology was shown in the pure BiVO4 catalyst, but the morphology of the BiVO4 catalyst doped with Sm ion was changed into an ellipse shape and also the particle size decreased. In the photocatalytic decomposition of rhodamine B, Sm ion doped BiVO4 catalyst showed higher photocatalytic activity than the pure BiVO4 catalyst. In addition, the Sm3-BVO catalyst doped with 3% Sm ion showed the highest photocatalytic activity, as well as the highest formation rate of OH radicals (•OH) and the highest PL peak. This result suggests that the formation rate of OH radicals produced in the interface between the photocatalyst and water is well correlated with the photocatalytic activity.

Preparation and properties of multiferroic bismuth iron oxides

  • Nam, Joong-Hee;Joo, Yong-Hui;Cho, Jeong-Ho;Chun, Myoung-Pyo;Kim, Byung-Ik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.66-69
    • /
    • 2009
  • The compositional dependence of bismuth iron oxides and effect of La-substitutions in the structure of $BiFeO_3$ compounds were investigated, which compounds were synthesized by conventional ceramic processing. It is shown that some of bismuth iron oxides including $BiFeO_3$ show the narrow single phase region. The effect of La-doping in $BiFeO_3$ was presented as disappearance of many impurity phases of Bi-Fe-O compounds. The lower electrical resistivity was obtained as those compositions of Fe deficient region and La-doped $BiFeO_3$. The saturation magnetization of La-doped $BiFeO_3$ was increased with La content. The dielectric dispersion was also observed for those Bi-Fe-O compounds with Fe deficient and La-doped $BiFeO_3$ at low frequencies under 1 kHz.

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Fitriani, Fitriani;Said, Suhana Mohd;Rozali, Shaifulazuar;Salleh, Mohd Faiz Mohd;Sabri, Mohd Faizul Mohd;Bui, Duc Long;Nakayama, Tadachika;Raihan, Ovik;Hasnan, Megat Muhammad Ikhsan Megat;Bashir, Mohamed Bashir Ali;Kamal, Farhan
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.

Preparation and Luminescent Properties of YNbO$_4$ : Bi Phosphors by Flux Technique with B$_2$O$_3$ (Boron Oxide Flux를 이용한 YNbO$_4$ : Bi 청색 형광체의 제조 및 발광 특성)

  • 한정화;김현정;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.319-324
    • /
    • 1999
  • 기존의 고상 반응법에 의해 합성된 YNbO4 : Bi 형광체의 발광특성을 개선하기 위하여 B2O3 융체 첨가법으로 형광체를 합성하고, 빛발광(PL) 및 저전압 음극선발광(CL)을 측정하였다. PL 및 CL 모두 415~440 nm 영역에서 강한 청색 발광 스펙트럼을 나타냈으며, 고상 반응의 경우와 마찬가지로 Y/Nb 비율이 화학 양론상의 1:1인 경우보다 결함구조를 인위적으로 조절한 51/49나 54/46에서 최대의 발광강도를 보였다. 한편, 고상 반응에서는 125$0^{\circ}C$에서 4시간 열처리하는 것이 최대의 발광효과를 나타냈으나, B2O3융제를 첨가하고 110$0^{\circ}C$에서 열처리한 시료가 결정성이 좋고 입자의 크기 및 형태가 균일하여 PL뿐만 아니라 CL에서도 우수한 발광특성을 보였다. B2O3융제를 첨가하는 방법으로 열처리 온도를 낮추고 입자크기와 형태를 조절하여 형광체의 휘도를 개선할 수 있었다.

  • PDF

Effect of $Al_2O_3$ Additives on Microwave Dielectric Properties of (Ba,Ca,Mg)-$Nd_2O_3-TiO_2+10wt%Bi_2O_3$ Ceramics ($Al_2O_3$ 첨가가 (Ba,Ca,Mg)-$Nd_2O_3-TiO_2+10wt%Bi_2O_3$ 세라믹의 마이크로파 유전특성에 미치는 영향)

  • 최지원;강종윤;하종윤;윤석진;김현재;정현진;윤기현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.653-656
    • /
    • 1999
  • Effect of $Al_2O_3$ Additives on Microwave Dielectric Properties of $0.15(Ba_{0.85}Ca_{(0.15-y)}Mg_y)$-0.125 $Nd_2O_3-0.60TiO_2+10wt%Bi_zO_3$ (y=0.05, 0.08) Ceramics was investigated. To control of $\tau\;{f}$ on microwave dielectric properties of $0.15(Ba_{0.85}Ca_{(0.15-y)}Mg_y)$-0.125 $Nd_2O_3-0.60TiO_2+10wt%Bi_zO_3$ ceramics $Al_2O_3$ was doped in the composition range of 0 to 0.15 wt%. As a result, dielectric constant was decreased from 94 to 80 but $Q\cdot{f}_0$ value was increased from 4980 to 5210 GHz and temperature coefficient of resonant frequency can be controlled from +9 to -10$ppm^\circ{C}$ as an increase of$Al_2O_3$ doping concentration. Especially, a new microwave dielectric material having $\varepsilon\;_r=84,\;Q\cdot{f}_0=5120\;GHz\;and\;\tau_f=0\;ppm/^\circ{C}$ was obtained at $Al_2O_3$ doping concentration of 0.08 wt%.

  • PDF

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor (ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.961-968
    • /
    • 2012
  • In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).

Sublimation and high-temperature stability of SnO2-doped Bi2O3 ionic materials in controlled atmosphere

  • Cheng, Yu-Hung;Chen, Yen-Yu;Wei, Wen-Cheng J.
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.388-393
    • /
    • 2018
  • Sublimation of $Bi_2O_3$-based materials is an important degradation issue for the long-term applications of many electronic devices. A series of $SnO_2$-doped $Bi_2O_3$ materials (SBO), was synthesized, densified, and then tested in air or strong reducing atmosphere. The $SnO_2$-doping effects and sublimation kinetics of the SBO materials were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and precise mass loss measurement. The results show that formation of $Bi_2Sn_2O_7$ phase greatly retards the mass loss of SBO. The SBO samples show a surface sublimation in an energy of $52.6kJ{\cdot}mol^{-1}$. However, the sublimation is also controlled by surface microstructure as the amount of vaporizing species (the Bi or gaseous Bi-oxides) is more than 0.1 mass%. The evaporation is retarded on the rough surface and the mechanism of surface evaporation is changed to diffusional control.

Sintering and the Electrical Properties of Co-doped $ZnO-Bi_2O_3-Sb_2O_3$ Varistor System (Co를 첨가한 $ZnO-Bi_2O_3-Sb_2O_3$ 바리스터의 소결 및 전기적 특성)

  • 김철홍;김진호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.186-193
    • /
    • 2000
  • Effects of 1.0 mol% CoO addition on sintering and the electrical properties of ZnO-Bi2O3-Sb2O3(ZBS) varistor system with 3.0 mol% co-addition of Sb2O3 and Bi2O3 at various Sb/Bi ratio (0.5, 1.0, and 2.0) were investigated. Cobalt had little influence on the liquid-phase formation and the pyrochlore decomposition temepratures of ZBS, while densification was mainly dependent on Sb/Bi ratio: when Sb/Bi=0.5, excess Bi2O3 irrelevant to the formation of pyrochore(Zn2Sb3Bi3O14) forms eutectic liquid at ~75$0^{\circ}C$ which promotes densification and grain growth; with Sb/Bi=2.0, the second phase Zn7Sb2O12 formed by excess Sb2O3 irrelevant to the formation of the pyrochlore retards densification up to ~100$0^{\circ}C$. These phases caused the coarsening and uneven distribution of the second phase particles on the grain boundaries of ZnO above the pyrochlore decomposition temperature(~105$0^{\circ}C$), which led to broad size dist-ribution of ZnO; the specimen with Sb/Bi=1.0 showed homogeneous microstructure compared with the others, which enabled improved varistor characteristics. Doping of Co increased the nonlinearity and the potential barrier height of ZBS, which is thought to stem from improved sintering behavior such as homogenized microstructure due to size reduction and even distribution of the second phase and suppressed volatility of Bi2O3, as well as the improvement in the potential barrier structure via increased donor and interface electron trap densities.

  • PDF