• Title/Summary/Keyword: Bhattacharyya Algorithm

Search Result 15, Processing Time 0.019 seconds

Object Tracking with the Multi-Templates Regression Model Based MS Algorithm

  • Zhang, Hua;Wang, Lijia
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1307-1317
    • /
    • 2018
  • To deal with the problems of occlusion, pose variations and illumination changes in the object tracking system, a regression model weighted multi-templates mean-shift (MS) algorithm is proposed in this paper. Target templates and occlusion templates are extracted to compose a multi-templates set. Then, the MS algorithm is applied to the multi-templates set for obtaining the candidate areas. Moreover, a regression model is trained to estimate the Bhattacharyya coefficients between the templates and candidate areas. Finally, the geometric center of the tracked areas is considered as the object's position. The proposed algorithm is evaluated on several classical videos. The experimental results show that the regression model weighted multi-templates MS algorithm can track an object accurately in terms of occlusion, illumination changes and pose variations.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

STUDY ON HURWITZ STABILITY CONDITIONS OF THE CHARACTERISTIC POLYNOMIALS USING THE COEFFICIENT DIAGRAM (계수도를 이용한 특성다항식의 Hurwitz 안정조건에 관한 연구)

  • Kang, Hwan-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.413-416
    • /
    • 1998
  • We investigate the Hurwitz stability condition using the coefficient diagram. The coefficient diagram consists of a plot of logarithmic values of the coefficients of the characteristic polynomial versus the degree of the coresponding coefficients. The logarithmic value of the coefficient of the characteristic polynomials are plotted in the descending order. Using the Bhattacharyya, Chapellat and Keel's algorithm, the sufficient and necessary condition for Hurwitz stability are reconstructed using the coefficient diagram. With the coefficient diagram we also present some necessary or sufficient conditions for Hurwitz stability of polynomials. In addition we obtain a lower bound for the Manabe parameter $\tau$.

  • PDF

Active Contours Level Set Based Still Human Body Segmentation from Depth Images For Video-based Activity Recognition

  • Siddiqi, Muhammad Hameed;Khan, Adil Mehmood;Lee, Seok-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2839-2852
    • /
    • 2013
  • Context-awareness is an essential part of ubiquitous computing, and over the past decade video based activity recognition (VAR) has emerged as an important component to identify user's context for automatic service delivery in context-aware applications. The accuracy of VAR significantly depends on the performance of the employed human body segmentation algorithm. Previous human body segmentation algorithms often engage modeling of the human body that normally requires bulky amount of training data and cannot competently handle changes over time. Recently, active contours have emerged as a successful segmentation technique in still images. In this paper, an active contour model with the integration of Chan Vese (CV) energy and Bhattacharya distance functions are adapted for automatic human body segmentation using depth cameras for VAR. The proposed technique not only outperforms existing segmentation methods in normal scenarios but it is also more robust to noise. Moreover, it is unsupervised, i.e., no prior human body model is needed. The performance of the proposed segmentation technique is compared against conventional CV Active Contour (AC) model using a depth-camera and obtained much better performance over it.