Fig. 1. The flow chart of the regression model based MS algorithm.
Fig. 2. The tracking results obtained by using the MIL, CT, VTD, and the proposed method.
Table 1. The average per-frame computational cost (in seconds) of the trackers MIL, CT, VTD, and the proposed tracker
References
- A. Yilmaz, O. Javed, and M. Shah, "Object tracking: a survey," ACM Computing Surveys, vol. 38, no. 4, pp. 1-45, 2006. https://doi.org/10.1145/1132952.1132953
- J. Gao, H. Ling, W. Hu, and J. Xing, "Transfer learning based visual tracking with Gaussian processes regression," in Computer Vision-ECCV 2014. Cham: Springer, 2014, pp. 188-203.
- J. Ning, J. Yang, S. Jiang, L. Zhang, and M. H. Yang, "Object tracking via dual linear structured SVM and explicit feature map," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, 2016, pp. 4266-4274.
- X. Mei and H. Ling, "Robust visual tracking and vehicle classification via sparse representation," IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. 11, pp. 2259-2272, 2011. https://doi.org/10.1109/TPAMI.2011.66
- K. Zhang, L. Zhang, and M. H. Yang, "Real-time compressive tracking," in Computer Vision-ECCV 2012. Heidelberg: Springer, 2012, pp. 864-877.
- F. Dadgostar, A. Sarrafzadeh, and S. P. Overmyer, "Face tracking using mean-shift algorithm: a fuzzy approach for boundary detection," in Affective Computing and Intelligent Interaction. Heidelberg: Springer, 2005, pp. 56-63.
- A. Adam, E. Rivlin, and I. Shimshoni, "Robust fragments-based tracking using the integral histogram," in Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition, New York, NY, 2006, pp. 798-805.
- D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang, "Incremental learning for robust visual tracking," International Journal of Computer Vision, vol. 77, no. 1, pp. 125-141, 2008. https://doi.org/10.1007/s11263-007-0075-7
- J. Kwon and K. M. Lee, "Visual tracking decomposition," in Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Francisco, CA, 2010, pp. 1269-1276.
- S. M. Jia, L. J. Wang, X. Z. Li, and L. F. Wen, "Person tracking system by fusing multicues based on patches," Journal of Sensors, vol. 2015, article ID. 760435, 2015.
- T. Zhang, B. Ghanem, S. Liu, C. Xu, and N. Ahuja, "Robust visual tracking via exclusive context modeling," IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 51-63, 2016. https://doi.org/10.1109/TCYB.2015.2393307
- H. Grabner, M. Grabner, and H. Bischof, "Real-time tracking via online boosting," in Proceedings of the British Machine Vision Conference, Edinburgh, UK, 2006, pp. 47-56.
- H. Grabner, C. Leistner, and H. Bischof, "Semi-supervised online boosting for robust tracking," in Computer Vision-ECCV 2008. Heidelberg: Springer, 2008, pp. 234-247.
- C. Zhang, J. C. Platt, and P. A. Viola, "Multiple instance boosting for object detection," Advances in Neural Information Processing Systems, vol. 18, pp. 1417-1424, 2006.
- K. Zhang and H. Song, "Real-time visual tracking via online weighted multiple instance learning," Pattern Recognition, vol. 46, no. 1, pp. 397-411, 2013. https://doi.org/10.1016/j.patcog.2012.07.013
- L. J. Wang and H. Zhang, "Visual tracking based on an improved online multiple instance learning algorithm," Computational Intelligence & Neuroscience, vol. 2006, article no. 12, 2016.
- J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227, 2009. https://doi.org/10.1109/TPAMI.2008.79
- H. Cheng, Z. Liu, L. Yang, and X. Chen, "Sparse representation and learning in visual recognition: theory and applications," Signal Processing, vol. 93, no. 6, pp. 1408-1425, 2013. https://doi.org/10.1016/j.sigpro.2012.09.011
- F. Chen, Q. Wang, S. Wang, W. Zhang, and W. Xu, "Object tracking via appearance modeling and sparse representation," Image and Vision Computing, vol. 29, no. 11, pp. 787-796, 2011. https://doi.org/10.1016/j.imavis.2011.08.006
- S. Zhang, H. Yao, H. Zhou, X. Sun, and S. Liu, "Robust visual tracking based on online learning sparse representation," Neurocomputing, vol. 100, pp. 31-40, 2013. https://doi.org/10.1016/j.neucom.2011.11.031
- P. Liang, Y. Pang, C. Liao, X. Mei, and H. Ling, "Adaptive objectness for object tracking," IEEE Signal Processing Letters, vol. 23, no. 7, pp. 949-953, 2016. https://doi.org/10.1109/LSP.2016.2556706
- S. M. Jia, S. H. Wang, L. J. Wang, and X. Z. Li, "Human tracking based on multi-feature for intelligent robot under the CTF location strategy," Journal of Shanghai Jiaotong University, vol. 48, no. 7, pp. 1039-1052, 2014.
- L. J. Wang, S. M. Jia, X. Z. Li, and Y. B. Lu, "Person tracking for robot using patches-based-multi-cues representation," Control and Decision, vol. 31, no. 2, pp. 337-342, 2016.
- G. B. Li and H. F. Wu, "Weighted fragments-based mean-shift tracking using color-texture histogram," Journal of Computer-Aided Design & Computer Graphics, vol. 23, no. 11, pp. 2059-2066, 2011.
- J. Yang, Z. S. Gao, H. Z. Yuan, J. Yu, X. Q. Zhang, and C. Y. Liu, "Single sample face recognition based on LBP feature and Bayes model," Journal of Optoelectronics Laser, vol. 22, no. 5, pp. 763-765, 2011.