• Title/Summary/Keyword: Beta-cell proliferation

Search Result 604, Processing Time 0.027 seconds

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.

Effects of $17{\beta}$-Estradiol and Estrogen Receptor Antagonists on the Proliferation of Gastric Cancer Cell Lines

  • Kim, Myung-Jin;Cho, Sung-Il;Lee, Kun-Ok;Han, Hyung-Joon;Song, Tae-Jin;Park, Seong-Heum
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.172-178
    • /
    • 2013
  • Purpose: The aims of this study were as follow: 1) to de scribe the expression status of estrogen receptor-${\alpha}$ and -${\beta}$ mRNAs in five gastric carcinoma cell lines; 2) to evaluate in vitro the effects of $17{\beta}$-estradiol and estrogen receptor antagonists on the proliferation of the cell lines. Materials and Methods: Detection of estrogen receptor-${\alpha}$ and estrogen receptor-${\beta}$ mRNA in five human gastric cancer cell lines (AGS, KATO III, MKN28, MKN45 and MKN74) was made by the reverse transcription-polymerase chain reaction system. To evaluate the effect of $17{\beta}$-estradiol and estrogen receptor antagonists on the proliferation of gastric cancer cell line, the cell lines which expressed both es trogen receptors were chosen and treated with $17{\beta}$-estradiol and estrogen receptor antagonists (methyl-piperidino-pyrazole and pyrazolo [1,5-a] pyrimidine). Cell proliferation was assessed with the methylthiazol tetrazolium test. Results: Estrogen receptor-${\alpha}$ and estrogen receptor-${\beta}$ mRNAs were expressed in three (KATO III, MKN28 and MKN45) and all of the five gastric cancer cell lines, respectively. At higher concentrations, $17{\beta}$-estradiol inhibited cell growth of MKN28, MKN45 and KATO III cell lines. Neither estrogen receptor-${\alpha}$ nor estrogen receptor-${\beta}$ antagonist blocked the anti-proliferative effect of $17{\beta}$-estradiol. Conclusions: Our results indicate that estrogen receptor-${\beta}$ mRNAs are preferentially expressed in gastric cancers and also imply that hormone therapy rather than estrogen receptor blockers may be a useful strategy for the treatment of estrogen receptor-${\beta}$ positive gastric cancer. Its therapeutic significance in gastric cancer are, however, limited until more evidence of the roles of estrogen receptors in the gastric cancer are accumulated.

The effect of β-sitosterol proliferation and apoptosis in human uterine leiomyoma cells (계혈등(鷄血藤)의 Beta-sitosterol 성분이 자궁근종세포의 증식억제와 세포자멸사의 유도에 미치는 영향)

  • Park, Youngsun;Baek, Seunghee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.1
    • /
    • pp.181-191
    • /
    • 2005
  • Purpose : ${\beta}$-sitosterol is kind of phytosterols or plant which are structurally similar to cholesterol. This study was aimed to investigate the inhibitory effect of the ${\beta}$-sitosterol on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated time of the ${\beta}$-sitosterol and investigated cell death rate by cell count assay. Furthermore, flow cytometry analysis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with the ${\beta}$-sitosterol $16{\mu}M$ was increased in a time dependent. 2) The result of flow cytometry analysis, subG1 phase arrest related cell apoptosis was investigated 16.97% in uterine leiomyoma cell treated with the ${\beta}$-sitosterol $16{\mu}M$ and showed the fashion of proportional time dependent. 3) The gene expression of p27, p21 related cell cycle was increased according to increasing time interval but cyclin E-CDK2 complex was decreased expression. 4) The character of apoptosis, DNA fragmentation was significantly observed on the time dependent. 5) The expression of pro-caspase 3 and PARP were decreased dependent on treatment with time dependent. Conclusion : This study showed that the ${\beta}$-sitosterol have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis.

  • PDF

The effects of human milk proteins on the proliferation of normal, cancer and cancer stem like cells

  • Kang, Nam Mi;Cho, Ssang-Goo;Dayem, Ahmed Abdal;Lee, Joohyun;Bae, Seong Phil;Hahn, Won-Ho;Lee, Jeong-Sang
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.232-239
    • /
    • 2018
  • Human breast milk (HBM) provides neonates with indispensable nutrition. The present study evaluated the anti-cancer activity of diluted and pasteurized early HBM (< 6 weeks' lactation) on human breast cancer cell lines. The cell lines MCF7 and MDA-MB231 were exposed to 1 % HBM from the 1st, 3rd, and 6th weeks of lactation and exhibited reduced proliferation rates. As controls, breast cell lines (293T and MCF-10A), breast cancer cell lines (MCF-7 and MDA-MB-231), and $CD133^{hi}CXCR4^{hi}ALDH1^{hi}$ patient-derived human cancer stem-like cells (KU-CSLCs) were treated with prominent milk proteins ${\beta}$-casein, ${\kappa}$-casein, and lactoferrin at varying doses (10, 50, and $100{\mu}g$) for 24 or 48 hrs. The impact of these proteins on cell proliferation was investigated. Breast cancer cell lines treated with ${\kappa}$-casein and lactoferrin exhibited significantly reduced viability, in both a dose- and time-dependent manner. Interestingly, ${\kappa}$-casein selectively impacted only cancer (but not normal breast) cell lines, particularly the more malignant cell line. However, ${\beta}$-casein-exposed human breast cancer cell lines exhibited a significantly higher proliferation rate. Thus, ${\kappa}$-casein and lactoferrin appear to exert selective anti-cancer activities. Further studies are warranted to determine the mechanisms underlying ${\kappa}$-casein- and lactoferrin-mediated cancer cell-selective cytotoxic effects.

Effects of Low Level Laser on the Proliferation and Gene Expression of Fibroblasts and Immune Cells (저출력레이저조사가 섬유아세포와 면역세포의 증식 및 유전자발현에 미치는 영향)

  • Ik-Jun Lim;Keum-Back Shin;Bok Choi
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.1
    • /
    • pp.53-65
    • /
    • 1995
  • The growth and synthetic activities of fibroblasts are regulated by cytokines and growth factors derived from activated inflammatory cells. Stimulatory effect of low level laser (LLL) radiation on wound healing seems to be in part due to direct stimulatory action on cell proliferation and synthetic activities of fibroblasts. Also indirect stimulatory effect on the fibroblast function through inflammatory or immune cells is another possible mechanism of biostimulatory action of LLL. This study was performed to determine the growth rate of human gingival fibroblasts obtained biopsy and culture, fibroblast cell line, and immune cell line by using $[^3H]-$ thymidine incorporation test. And gene expression pattern was also analyzed by using the DNA probe such as Hsp70, IL-1$\beta$, MIP-1$\alpha$ and actin cDNA. Proliferation rate of gingival fibroblast was increased by LLL irradiation, but no more effect was added by LPS or IL-1$\beta$ pretreatment Enhanced Hsp70 gene expression was found from gingival fibroblasts and fibroblast cell line COS by LLL irradiation., which was not more increased by LPS or IL-1$\beta$ pretreatment. LLL-irradiated promyelcytic cell line HL-60 and macrophage cell line RAW264.7 showed significant stimulatory effect of proliferation rate when compared with respective control. However there were no changes in growth rate of other immune cell tested in this study, such as B cell line WR19n.l and 230, helper T cell line Jurkat and Hut78, cytolytic T cell line CTLL-r8. By LLL-irradiation Hsp70 gene expression was increased in RAW246.7 and HL-60, not in CTLL-R8. And IL-1$\beta$ and MIP-1$\alpha$ gene expression were induced only from LLL-irradiated RAW264.7. These results led us to presume that LLL radiation may affect to the immune cells, especially to macrophage, through which it might promote wound healing process.

  • PDF

THE EFFECT OF GROWTH FACTORS IN PLATELET-RICH PLASMA ON THE ACTIVITY OF OSTEOBLAST CELL LINE (혈소판농축혈장 내의 성장요소가 조골세포주의 활성도에 미치는 영향)

  • Jung Tae-Wook;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.175-191
    • /
    • 2004
  • Statement of problem: Platelet-rich plasma(PRP) is well known to be very effective method to stimulate and accelerate the healing of bone and soft tissue. However, there are few reports which deal with the mechanisms of the PRP on the activation of the osteoblasts. Purpose: This study was aimed to investigate the effect of growth factors in PRP on the activity of osteoblasts. Material and method: To evaluate the effect on human, human osteoblast cell line was cultured. PRP was extracted from the blood of a healthy volunteer. Using the recombinant growth factors of PDGF, $TGFT-\beta$, IGF-1, bFGF which are mainly found at bone matrix and their neutralizing antibody, the effect of PRP on the attachment and proliferation of osteoblasts was evaluated. To evaluate the autocrine and paracrine effects, conditioned media(CM) of PRP was made and compared with PRP. By the western blot analysis, the expression of growth factors in PRP, CM was examined. Cell morphology was compared by the light microscope. Results : 1) The effects of CM on osteoblast were similar to the effects of PRP. 2) PRP, CM, recombinant $TGF-\beta$, bFGF, IGF-1 showed significantly higher cellular attachment than control(p<0.05) in the cell attachment assay. In the cell proliferation assay, PRP, CM, recombinant $TGF-\beta$, IGF-1, bFGF, PDGF increased significantly cell proliferation(p<0.01). Among the recombinant growth factors, IGF-1 showed the highest cellular attachment and proliferation. 3) In the western blot assay, bFGF, IGF-1, PDGF weve equally expressed in PRP and CM. 4) The attachment of osteoblast cell decreased significantly after the addition of neutralizing antibody against $TGF-\beta$, IGF-1(p<0.05). In the cell proliferation assay, the addition of neutralizing antibody against $TGF-\beta$, bFGF, PDGF, IGF-1 decreased significantly the cellular proliferation(p<0.05). The amount of decreasing in the cell attachment and proliferation is the highest in at-lGF-1. 5) The cells in control group were flattened and elongated with a few cellular processes in the a light microscope. But, the cells appeared as spherical, plump cells with well developed cellular processes in experimental groups. The cells in PRP and CM had more prominent developed features than recombinant growth factor groups. Conclusions : These findings imply that PRP maximize the cellular activity in early healing period using the synergistic effect, autocrine, paracrine effects of growth factors and increase the rate and degree of bone formation.

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Pharmacological and Biochemical Characterization of Cells Isolated from Fetal Rat Calvaria (백서태자두개관에서 분리한 세포의 약리학적 및 생화학적 특성에 관한연구)

  • Han, Nam-Soo;Cheong, Dong-Kyun;Mori, Masakazu
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.193-207
    • /
    • 1990
  • Transforming growth factor ${\beta}(TGF-{\beta})$ is a multifunctional polypeptide with diverse effects on the proliferation, differentiation and other functions in many cell types. $TGF-{\beta}$ is highly abundant in bone matrix and induces divergent responses in many aspects of bone cell metabolism . Several lines of investigation indicate that matrix-associated $TGF-{\beta}$ is the products of bone cells themselves. However, exact bone cell type reponsible for the production of $TGF-{\beta}$ is still in controversy, The present study was undertaken to determine the cellular origin of matrix-associated $TGF-{\beta}$ and to assess how different bone cells respond to $TGF-{\beta}$. As a prerequisite for this, 5 bone cell populations of distinct phenotype were isolated from fetal calvaria with sequential enzyme digestion protocol and biochemical characterization. Calvarial cell populations released in early stage showed fibroblastic features whereas populations relesed later was enriched with osteoblast-like cell as judged by their acid and alkaline phosphatase activities, cAMP responsiveness to parathyroid hormone, calcitonin and prostaglandin $E_2$ and collagen synthesis rate. By polyacylamide gel and immunoblot analysis of bone and calvarial cell extracts, presence of $TGF-{\beta}$ in bone tissues and production of $TGF-{\beta}$ by bone cells were confirmed again. Subsequent analysis of calvarial cell extracts prepared as individual population revealed that all calvarial cell populations synthesize $TGF-{\beta}$. Exogenously added $TGF-{\beta}$ induced biphasic response upon bone cell proliferation under serum-free condition. In osteoblastic cell populations, it was stimulatory whereas inhibitory in fibroblastic cell populations. In contrast, collagen and noncollagen protein synthesis of all calvarial cell populations were stimulated by $TGF-{\beta}$. Enhancement of protein synthesis was found to be more general rather than specific for collagen synthesis. In addition, effects of $TGF-{\beta}$ on protein synthesis were independent to its effects on cell proliferation. In summary, production of $TGF-{\beta}$ by bone cells and differential actions on various cell populations observed in this study suggest that $TGF-{\beta}$ may play an important role in the regulation of bone metabolism by modulating the specific cellular functions in autocrine and paracrine fashion.

  • PDF

Effects of Hormones on the Proliferation of Stromal Vascular Cells from Hanwoo Cattle Adipose Tissues

  • Lee, S.C.;Lee, H.J.;Kim, D.W.;Kim, J.W.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.161-166
    • /
    • 2000
  • This study was designed to determine the effects of the insulin-like growth factor (IGF-1) and estradiol $17-{\beta}$ on the in vitro proliferation of stromal vascular cell from Hanwoo omental, subcutaneous, intermuscular and intramuscular adipose tissues. Cells were cultured in M199+20% newborn calf serum and the proliferation of cells was measured by direct microscopic cell counting and change of genomic DNA amount. Cell numbers increased slightly over the first 72 hour of culture and then increased greatly, regardless of adipose tissue depots. In IGF-1 treatment, the number of omental preadipocytes maintained highest level from the beginning to the 20th day of culture. However, in estradiol-$17{\beta}$ treatment, those tended to be lower than the control from the beginning of culture and significantly lower at the 24th day. When IGF-1 was added to subcutaneous preadipocytes, the numbers of cells were higher from 11th day than those from other treatments, although there was no statistical significance. For intermuscular preadipocytes treated with IGF-1, its numbers were significantly (p<0.05) higher at 11th day, and in the other days it showed a similar tendency to those of the subcutaneous tissue. In this experiment, preadipocytes were taken from 24 month old fully matured steers and the highest proliferation rate was shown in intramuscular tissue followed by those of subcutaneous preadipocytes. Addition of $5{\mu}M$ estradiol-$17{\beta}$ to the growth medium failed to promote the replication of Hanwoo preadipocytes, as indicated by direct cell counts and total genomic DNA content. As the culture period proceeded, the amounts of DNA were increased, but the patterns of increment were not consistent with the results of cell numbers.