• 제목/요약/키워드: Beta-amyloid

검색결과 436건 처리시간 0.024초

BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구 (Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells)

  • 최혜림;하지선;김인식;양승주
    • 대한임상검사과학회지
    • /
    • 제52권3호
    • /
    • pp.253-260
    • /
    • 2020
  • 알츠하이머 병은 인지 기능 저하로 인한 치매 발생으로 설명할 수 있는 만성 및 진행성 신경 퇴행성 질환이다. 알츠하이머 병의 특징은 세포 외 및 세포 내 아밀로이드 플라크의 형성이다. 아밀로이드 베타는 알츠하이머 병의 특징이며 미세아교세포는 아밀로이드 베타의 존재하에 활성화될 수 있다. 활성화된 미세아교세포는 전 염증성 사이토카인을 분비한다. 게다가, S100A9는 염증의 중요한 선천성 전 염증 기여자이며 알츠하이머 병에 잠재적인 기여자로 알려져 있다. 이 연구는 아밀로이드 베타 및 S100A9이 처리된 BV-2 세포에서 염증반응 및 NLRP3 인플라마솜 활성화에 대한 메트포르민 및 알파리포산의 효과를 조사했다. 메트포르민과 알파-리포산은 종양 괴사 인자-알파 및 일터루킨-6와 같은 염증성 사이토카인을 약화시킨다. 또한 메트포르민과 알파-리포산은 JNK, ERK, p38의 인산화를 억제하고, NF-kB 경로 및 NLRP3 인플라마솜의 활성화를 억제했다. 또한 메트포르민과 알파-리포산은 M1 표현형인 ICAM1의 수준을 감소시킨 반면 M2 표현형인 ARG1은 증가시켰다. 이러한 발견은 메트포르민과 알파-리포산이 아밀로이드베타 및 S100A9에 의한 신경 염증 반응에 대한 치료제가 될 수 있음을 시사한다.

반하가 CT105에 의한 신경세포 상해 및 백서의 기억에 미치는 영향 (Neuroprotective and Memory Enhancing Effects of Pinelliae rhizoma Extract)

  • 강상렬;이소연;윤현덕;신오철;박창국;박치상
    • 대한한의학회지
    • /
    • 제26권3호
    • /
    • pp.27-42
    • /
    • 2005
  • Objectives : Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease characterized by amyloid plaques and neurofibrillary tangles. These plaques are associated with degenerating neuronal processes and consist primarily of fibrillary aggregates of beta-amyloid$ protein, generated from amyloid precursor protein (APP). Another amyloidogenic fragment, the carboxyl terminus (CT) of APP, which is composed of 99-105 amino acid residues containing the complete $A{\beta}$ sequence, also appears to be toxic to neurones. Recent evidence suggest that CT105, carboxy terminal 105 amino acids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. Methods : Although a variety of oriental prescriptions including Pinelliae rhizoma have traditionally been utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. In the present study, we investigated effects of the dichloromethane extract of Pinelliae rhizoma (PINR) on neurotoxicity and the formation of reactive oxygen species (ROS) and nitric oxide (NO) in SK-N-SH cells overexpressed with CT105. In addition, we evaluated its radical scavenging activity and effects on acetylcholinesterase (AChE) activity. Furthermore, effects on cognitive deficits induced by scopolamine treatment in rats were evaluated. Results ; We found in this study that PINR significantly inhibited apoptotic neuronal death induced by CT105 overexpression in SK-N-SH cells. Based on morphological examinations by phase-contrast microscopy, PINR reversed apoptotic changes of CT105-expressed cells. It was also found that PINR significantly promoted neurite outgrowth and inhibited formation of ROS nd NO. PINR was shown to scavenge DPPH radicals and noncompetitively inhibit AChE activity. Furthermore, it reduced scopolamine-induced memory impairment in rata, assessed by passive avoidance test. Conclusions : Taken together, these results demonstrate that PINR exhibits neuroprotective, antioxidant, and memory enhancing effects, and therefore may bs beneficial for the treatment of AD.

  • PDF

Investigation of the Copper (Cu) Binding Site on the Amyloid beta 1-16 (Aβ16) Monomer and Dimer Using Collision-induced Dissociation with Electrospray Ionization Tandem Mass Spectrometry

  • Ji Won Jang;Jin Yeong Lim;Seo Yeon Kim;Jin Se Kim;Ho-Tae Kim
    • Mass Spectrometry Letters
    • /
    • 제14권4호
    • /
    • pp.153-159
    • /
    • 2023
  • The copper ion, Cu(II), binding sites for amyloid fragment Aβ1-16 (=Aβ16 ) were investigated to explain the biological activity difference in the Aβ16 aggregation process. The [M+Cu+(z-2)H]z+ (z = 2, 3 and 4, M = Aβ16 monomer) and [D+Cu+(z-2)H]z+ (z = 3 and 5, D = Aβ16 dimer) structures were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Fragment ions of the [M+Cu+(z-2)H]z+ and [D+Cu+(z-2)H]z+ complexes were observed using collision-induced dissociation MS/MS. Three different fragmentation patterns (fragment "a", "b", and "y" ion series) were observed in the MS/MS spectrum of the (Aβ16 monomer or dimer-Cu) complex, with the "b" and "y" ion series regularly observed. The "a" ion series was not observed in the MS/MS spectrum of the [M+Cu+2H]4+ complex. In the non-covalent bond dissociation process, the [D+Cu+3H]5+ complex separated into three components ([M+Cu+H]3+, M3+, and M2+), and the [M+Cu]2+ subunit was not observed. The {M + fragment ion of [M+Cu+H]3+} fragmentation pattern was observed during the covalent bond dissociation of the [D+Cu +3H]5+ complex. The {M + [M+Cu+H]3+} complex geometry was assumed to be stable in the [D+Cu+3H]5+ complex. The {M + fragment ion of [M+Cu]2+} fragmentation pattern was also observed in the MS/MS spectrum of the [D+Cu+H]3+ complex. The {M + [y9+Cu]1+} fragment ion was the characteristic fragment ion. The [D+Cu+H]3+ and [D+Cu+3H]5+ complexes were likely to form a monomer-monomer-Cu (M-M-Cu) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1225-1228
    • /
    • 2005
  • C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

제주 연안 갈조류 추출물의 신경세포 보호효과 (Cytoprotective Effects of Phaeophyta Extracts from the Coast of Jeju Island in HT-22 Mouse Neuronal Cells)

  • 신동범;한은혜;박성수
    • 한국식품영양과학회지
    • /
    • 제43권2호
    • /
    • pp.224-230
    • /
    • 2014
  • 항암, 항염증 및 비만억제 등의 생리활성을 지닌 해조류는 최근 건강기능 식품, 기능성 화장품 그리고 의약품 산업 분야에서 미용과 건강식품 소재로 각광받고 있다. 본 연구에서는 10종의 갈조류 메탄올 추출물을 이용하여 1,1-diphenyl-2-picrylhydrazyl(DPPH) 라디칼 소거능과 아밀로이드 베타 단백질($A{\beta}$)의 신경독성에 대한 HT-22 신경세포 보호효과를 조사함으로써 천연물로부터 안전하고 새로운 신경세포 보호소재를 개발해내고자 한다. DPPH 라디칼 소거능의 경우 미역쇠를 포함한 8종의 갈조류에서는 비교적 낮은 활성산소 소거능을 보인 반면, 감태와 패에서 강력한 활성산소 소거능이 나왔다. $A{\beta}$의 신경독성에 대해 10종의 갈조류 추출물이 갖는 HT-22 신경세포 보호효과를 검증하기 위해 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) 분석과 APP, BACE1, iNOS 단백질의 발현양상 및 ERK1/2, p38, JNK1/2 단백질의 활성화 양상을 분석했다. MTT 분석 결과, $A{\beta}$의 신경독성으로부터 미역쇠가 $25{\mu}g/mL$의 농도에서 가장 효과적으로 세포를 보호하고 있는 것으로 나타났고, 알쏭이모자반, 불레기말, 바위수염, 짝잎모자반도 세포 보호효과가 있는 것으로 나타났다. 세포 보호효과가 있는 것으로 밝혀진 5종의 갈조류를 가지고 수행한 단백질 발현분석 결과, 미역쇠는 $A{\beta}$의 신경독성에 의해 HT-22 신경세포에서 발현되는 단백질인 BACE1과 iNOS의 발현을 저해하였다. 이는 미역쇠의 세포보호효과가 $A{\beta}$의 신경독성으로부터 일어난 ERK와 p38의 활성화에 연관된 세포신호전달 경로를 억제하는 것으로 보인다. 그러므로 특히 식용 갈조류인 미역쇠는 $A{\beta}$에 의해 유도된 신경독성에 대해서 신경세포 보호효과를 갖는 건강기능 식품 소재로서의 가치가 충분한 것으로 사료된다.

총명탕(聰明湯)과 산사총명탕(山査聰明湯)이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響) (The Effects of ChongMyungTang(CMT) and SanSaChongMyungTang(SCMT) on the Alzheimer's Disease Model)

  • 하수영;정인철;이상룡
    • 동의신경정신과학회지
    • /
    • 제17권1호
    • /
    • pp.59-78
    • /
    • 2006
  • Objective : This research investigates the effect of the CMT and SCMT on Alzheimer's disease. Methods : The effects of the CMT and SCMT on (1) amyloid precursor proteins(APP), acetylcholinesterase(AChE) mRNA of PC-12 cells treated with CT-105; (2) the AChE activity and the APP production of PC-12 cell treated with CT-105; (3) the behavior; (4) expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA; (5) the infarction area of the hippocampus in Alzheimer's disease mice induced with CT105 & ${\beta}A$ were investigated Rresults : 1. The CMT and SCMT suppressed the expression of APP, AChE mRNA in PC-12 cells treated with CT-105 2. The CMT and SCMT suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT-105. 3. For the CMT and SCMT group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}A$ in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency 4. The CMT and SCMT suppressed the over-expression of $IL-1{\beta}$, $TNF-{\alpha}$, MDA in the mice with Alzheimer's disease induced by ${\beta}A$. 5. The CMT and SCMT reduced the infarction area of hippocampus with Alzheimer's disease induced by ${\beta}A$. Conclusions : These results suggest that the CMT and SCMT may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the CMT and SCMT for Alzheimer's disease is suggested for future research.

  • PDF

대황(大黃)이 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響) (The Effects of Rheum palmatum(RHP) Extract on the the Alzheimer's Disease Model)

  • 박철환;정인철;이상룡
    • 동의신경정신과학회지
    • /
    • 제16권1호
    • /
    • pp.67-80
    • /
    • 2005
  • This experiment was designed to investigate the effect of Rheum palmatum(RHP) on the Alzheimer's disease. The effects of RHP extract on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by $A{\beta}\;and\;IL-1{\beta},\;IL-6,\;TNF-{\alpha}$ mRNA of THP-1 cell treated by LPS and AChE activity of PC-12 cell lysate treated by $A {\beta}$and behavior of memory deficit rats induced by scopolamine and mice glucose, uric acid, AChE activity of memory deficit rats induced by scopolamine were investigated, respectively. The results were summarized as follows ; 1. RHP extract suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta} $. 2. RHP extract suppressed $IL-1{\beta} $, IL-6 $TNF-{\alpha}$ mRNA in THP-1 cell treated by LPS. 3. RHP extract suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. HP extract increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit rats induced by scopolamine. 5. RHP extract group showed significantly inhibitory effect on the memory deficit of mice induced by scopolamine in the experiment of Morris water maze. According to the above results, it is suggested that RHP extract might be usefully applied for prevention and treatment of Alzheimer’s disease and memory deficit symptom.

  • PDF

Effects of chronic alcohol consumption on expression levels of APP and Aβ-producing enzymes

  • Kim, Sae-Rom;Jeong, Hye-Young;Yang, Sung-Hee;Choi, Sung-Pil;Seo, Min-Young;Yun, Young-Kwang;Choi, Yu-Ri;Baik, Sang-Ha;Park, Jong-Sung;Gwon, A-Ryeong;Yang, Dong-Kwon;Lee, Chan-Ho;Lee, Sun-Mee;Park, Kye-Won;Jo, Dong-Gyu
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.135-139
    • /
    • 2011
  • Chronic alcohol consumption contributes to numerous diseases, including cancers, cardiovascular diseases, and liver cirrhosis. Epidemiological studies have shown that excessive alcohol consumption is a risk factor for dementia. Along this line, Alzheimer's disease (AD) is the most common form of dementia and is caused by the accumulation of amyloid-$\beta$ ($A{\beta}$ plaques in neurons. In this study, we hypothesized that chronic ethanol consumption is associated with pathological processing of APP in AD. To investigate the relationship between chronic alcohol consumption and $A{\beta}$ production, brain samples from rats fed an alcohol liquid diet for 5 weeks were analyzed. We show that the expression levels of APP, BACE1, and immature nicastrin were increased in the cerebellum, hippocampus, and striatum of the alcohol-fed group compared to the control group. Total nicastrin and PS1 levels were induced in the hippocampus of alcohol-fed rats. These data suggest that the altered expression of APP and $A{\beta}$-producing enzymes possibly contributes to the chronic alcohol consumption-mediated pathogenesis of AD.

Alzheimer성 치매 유발 생쥐의 뇌조직 손상에 대한 인삼, 목과 혼합추출액의 치료 효과 (Therapeutic Effect of the Mixed Extract of Panax ginseng C.A. Mey. and Chaenomeles sinensis Koehne on the Injury of Brain Tissue in the Mice by Alzheimer's Disease)

  • 한신희;도은수
    • 한국자원식물학회지
    • /
    • 제20권4호
    • /
    • pp.325-330
    • /
    • 2007
  • 인삼, 목과 혼합추출액이 ${\beta}A$로 유도된 AD 병태 모델에 미치는 영향을 관찰한 결과, 다음과 같은 결론을 얻었다. 1. 인삼, 목과 혼합추출액은 AD 병변 뇌조직의 허혈(虛血) 상태를 유의성 있게 개선하였고 허혈(虛血)로 인한 뇌조직 손상을 억제하였다. 2. 인삼, 목과 혼합추출액은 AD 병변 뇌조직의 면역조직화학 염색법으로 Tau 단백질, GFAP 단백질, presenilin 1/presenilin 2 단백질의 발현 억제를 확인하였다. 이상의 결과로 미루어 보아 인삼, 목과 추출액은 AD의 예방과 치료에 사용될 수 있을 것으로 판단되며 정확한 기전에 대한 연구와 AD 치료에 있어서 인삼, 목과 혼합추출액의 임상적 활용에 대한 연구가 향후 지속적으로 이루어져야 할 것으로 사료된다.