• 제목/요약/키워드: Beta-amyloid$(A_{\beta})$

검색결과 388건 처리시간 0.024초

Gossypin Protects Primary Cultured Rat Cortical Cells from Oxidative Stress- and $\beta$-Amyloid-Induced Toxicity

  • Yoon, Injae;Lee, Kwang-Heun;Choi, Jungsook
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.454-459
    • /
    • 2004
  • The present study investigated the effects of gossypin, 3,3',4',5,7,8-hexahydroxyflavone 8-glucoside, on the toxicity induced by oxidative stress or $\beta$-amyloid ($A_{\beta}$) in primary cultured rat cortical cells. The antioxidant properties of gossypin were also evaluated by cell-free assays. Gossypin was found to inhibit the oxidative neuronal damage induced by xanthinelxanthine oxidase or by a glutathione depleting agent, D,L-buthionine (S,R)-sulfoximine. In addition, gossypin significantly attenuated the neurotoxicity induced by $A_{{\beta}(25-35)}$. Furthermore, gossypin dramatically inhibited lipid peroxidation initiated by $Fe^{2+}$ and ascorbic acid in rat brain homogenates. It also exhibited potent radical scavenging activity generated from 1 ,1-diphenyl-2-picrylhydrazyl. These results indicate that gossypin exerts neuroprotective effects in the cultured cortical cells by inhibiting oxidative stress- and $A_{\beta}$-induced toxicity, and that the antioxidant properties of gossypin may contribute to its neuroprotective actions.

흰쥐의 뇌 astrocyte에서 $amyloid-{\beta}25-35$로 유발된 지질의 과산화와 항산화 효소계 및 NO 생성에 미치는 백강잠의 효과 (Effects of Bombycis corpus on Amyloid-induced Lipid Peroxidation Antioxidative Enzymes and NO Synthesis in Rat Astrocytes)

  • 김희준;정지천;윤철호
    • 대한한방내과학회지
    • /
    • 제22권3호
    • /
    • pp.331-339
    • /
    • 2001
  • 목적 : 본 연구는 식풍해경(熄風解痙), 소산풍열(疏散風熱) 효능이 있는 백강잠이 치매에 미치는 영향을 알아보기 위하여 실험을 행하였다. 방법 : 치매 유발물질인 $amyloid{\beta}(A{\beta})$ 25-35를 흰쥐의 뇌 astrocyte에 처리한 후 대표적인 항산화 효소인 catalase, superoxide dismutase,glutathione peroxidase 및 glutathione-S-transferase의 활성 변화와 NO 생성 변화를 관찰하였다. 결과 $A{\beta}$ 25-35 처리로 catalase와 superoxide dismutase 활성이 현저히 감소하였으나 백강잠을 처리한 경우는 이들 효소 활성이 크게 증가하였다. 그리고, $A{\beta}$ 25-35의 농도에 의존적으로 증가된 NO 생성은 백강잠의 농도에 의존적으로 유의성 있게 억제되는 것으로 나타났다. 결론 : 백강잠은 항산화계 효소의 활성화 및 $A{\beta}$처리와 같은 치매유발 물질의 독성에 대한 적응능력 향상을 통하여 astrocyte를 보호하는 효능을 가지는 것으로 사료되며, 아울러 노인성 치매 등 임상적 응용에 그 효과가 기대된다.

  • PDF

Interaction Models of Substrate Peptides and β-Secretase Studied by NMR Spectroscopy and Molecular Dynamics Simulation

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Jin-Kyoung;Chae, Chi-Bom;Kim, Yangmee
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.651-656
    • /
    • 2009
  • The formation of ${\beta}$-amyloid peptide ($A{\beta}$) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, ${\alpha}$-, ${\beta}$-, and ${\gamma}$-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the ${\beta}$-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the ${\beta}$-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of ${\beta}$-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of ${\beta}$-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of ${\beta}$-secretase (P5-P3'), and the side chain of P2- Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by ${\beta}$-secretase than Sub W. The two substrate peptides showed different tendency to bind to ${\beta}$-secretase and this information may useful for drug development to treat and prevent Alzheimer's disease.

Loss of cholinergic innervations in rat hippocampus by intracerebral injection of C-terminal fragment of amyloid precursor protein

  • Han, Chang-Hoon;Lee, Young Jae
    • 대한수의학회지
    • /
    • 제48권3호
    • /
    • pp.251-258
    • /
    • 2008
  • The neurotoxicity of C-terminal fragments of amyloid precusor protein (CT) is known to play some roles in Alzheimer's disease progression. In this study, we investigated the effects of the recombinant C-terminal 105 amino acid fragment of amyloid precusor protein (CT105) on cholinergic function using CT105-injected rat. To study the effects of CT105 on septohippocampal pathway, choline acetyltransferase (ChAT) positive neurons were examined in the medial septum and in the diagonal band after an injection of CT105 peptide into the lateral ventricle. Immunohistological analysis revealed that the number of ChAT-immunopositive cells decreased significantly in both medial septum and diagonal band. In addition, CT105 decreased ChAT-immunopositive cells in the hippocampal area, particulary in the dentate gyros. To study the effect of amyloid beta peptide ($A{\beta}$) and CT105 on the cholinergic system, each peptide was injected into the left lateral ventricle, and acetylcholine (ACh) levels were monitored in hippocampus. ACh level in the hippocampal area was reduced to 60% of control level in $A{\beta}$-treated group, and the level was reduced to 15% of control level in CT105-treated group, at one week after the injection. ACh level was further reduced to 35% of control in $A{\beta}$-treated group, whereas the level was slightly increased to 30% of control in CT105-treated group at 4 weeks after the injection. Taken together, the results in the present study suggest that CT105 impairs the septohippocampal pathway by reducing acetylcholine synthesis and release, which results in damage of learning and memory.

머루전초, 독활전초, 감초 혼합추출물의 Amyloid β Protein (25-35) 유발 신경 독성에 대한 억제효과 (Inhibitory Effect of an Ethanol Extract Mixture of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix on Amyloid β Protein (25-35)-Induced Neurotoxicity)

  • 장지연;성연희
    • 한국약용작물학회지
    • /
    • 제22권2호
    • /
    • pp.105-112
    • /
    • 2014
  • The present study investigated an ethanol extract (SSB) of a mixture of three medicinal plants of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix for possible neuroprotective effects on neurotoxicity induced by Amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $15{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-30{\mu}g/m{\ell}$, SSB inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in cultured cortical neurons. Memory impairment and increase of acetylcholinesterase activity induced by intracerebroventricular injection of mice with 16 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with SSB (25, 50 and 100 mg/kg, p.o., for 8 days). From these results, it is suggested that antidementia effect of SSB is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that SSB may have a therapeutic role in preventing the progression of Alzheimer's disease.

A Correspondence between Aging-related Reduction of Neprilysin and Elevation of Aβ-42 or γ-Secretase Activity in Transgenic Mice Expressing NSE-controlled APPsw or Human Mutant Presenilin-2

  • Lim Hwa-J.;Kim Yong-K.;Sheen Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • 제14권2호
    • /
    • pp.106-109
    • /
    • 2006
  • Neprilysin (Nep) is known to be important to degrade $A{\beta}$ derived from amyloid precursor protein (APP) by cleavage with $\beta-and\;\gamma$-secretases. In order to determine whether a correspondence between $A{\beta}-42/{\gamma}-secretase$ activity and Nep levels exists in postnatal aging of transgenic mice expressing either neuron-specific enolase (NSE)-controlled human mutant presenilin-2 (hPS2m) or APPsw alone, the levels of Nep expression and $A{\beta}-42/{\gamma}-secretase$ activity were examined age of 5, 12, and 20 months, respectively. The levels of Nep expression in both types of transgenic brains were decreased relative to those of control mice in a aging-related manner, while the level of $A{\beta}-42/{\gamma}-secretase$ activity was reversibly increased. Thus, changes in $A{\beta}-42$ may all reflect variation in amounts of Nep enzyme.

Perilla frutescens var. japonica and rosmarinic acid improve amyloid-β25-35 induced impairment of cognition and memory function

  • Lee, Ah Young;Hwang, Bo Ra;Lee, Myoung Hee;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • 제10권3호
    • /
    • pp.274-281
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: The accumulation of amyloid-${\beta}$ ($A{\beta}$) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an $A{\beta}_{25-35}$-injected mouse model. MATERIALS/METHODS: Male ICR mice were intracerebroventricularly injected with aggregated $A{\beta}_{25-35}$ to induce AD. $A{\beta}_{25-35}$-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS: Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by $A{\beta}_{25-35}$, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the $A{\beta}_{25-35}$-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the $A{\beta}_{25-35}$-injected mouse brain. CONCLUSIONS: These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by $A{\beta}$.

High-pressure NMR application for amyloid-beta peptides

  • Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.17-20
    • /
    • 2022
  • High-pressure (HP) NMR is a versatile tool to investigate diverse features of proteins. This technique has been particularly powerful to elucidate structural dynamics that only populates sufficiently in a pressurized condition. Amyloidogenic proteins, which are prone to aggregate and form amyloid fibrils, often maintains highly dynamic states in its native or aggregation-prone states, and HP NMR contributed much to advance our understandings of the dynamic behaviors of amyloidogenic proteins and the molecular mechanisms of their aggregation. In this mini review, we therefore summarize recent HP NMR studies on amyloid-beta (Aβ), the representative amyloidogenic intrinsically disordered protein (IDP).

Protective effects of Cirsium japonicum var. maackii against amyloid beta-induced neurotoxicity in C6 glial cells

  • Kim, Ji Hyun;Kim, Min Jeong;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • 농업과학연구
    • /
    • 제46권2호
    • /
    • pp.369-379
    • /
    • 2019
  • Alzheimer's disease (AD) is the most common neurodegenerative disease associated with age, and amyloid beta ($A{\beta}$) is known to cause Alzheimer's disease. In the present study, we investigated the protective effects of Cirsium japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells. The cells treated with $A{\beta}_{25-35}$ showed a decrease in cell viability and an increase in reactive oxygen species (ROS) production compared with the non-treated cells. However, the cells treated with the C. japonicum var. maackii extract and its fractions increased the cell viability and inhibited the $A{\beta}$-induced ROS production. These results demonstrate the neuroprotective effects of C. japonicum var. maackii against $A{\beta}$. To further examine the protective mechanism, we measured inflammation and apoptosis related protein expressions. The cells treated with extract and fractions from C. japonicum var. maackii down-regulated inflammatory related proteins such as cyclooxygenase-2, interleukin $(IL)-1{\beta}$, and IL-6, and attenuated apoptosis related proteins including B-cell lymphoma-2 (Bcl-2) associated X protein/Bcl-2 ratio. In particular, the ethanol and ethylacetate fraction exhibited higher inhibitory effect against ROS production and apoptosis-related protein expressions among the extract and the other fractions. Therefore, this study demonstrated the protective effects of C. japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells through the regulation of oxidative stress, inflammation, and apoptosis, suggesting that it might have potential as a therapeutic for AD.

아밀로이드 베타로 유발한 알츠하이머병 모델에서 신선초의 기억력 개선 효과 (Angelica keiskei Improved Beta-amyloid-induced Memory Deficiency of Alzheimer's Disease)

  • 이지혜;김혜정;김동현;신범영;정지욱
    • 대한본초학회지
    • /
    • 제34권3호
    • /
    • pp.1-7
    • /
    • 2019
  • Objectives : Amyloid ${\beta}(A{\beta})$ could induce cognitive deficits through oxidative stress, inflammation, and neuron death in Alzheimer's disease (AD). This study was investigated the effect of Angelica keiskei KOIDZUMI (AK) on memory in $A{\beta}$-induced an AD model. Methods : AK was extracted uses 70% ethanol solvent. Total polyphenol and flavonoids content were obtained by the Folin-Ciocalteu and the Ethylene glycol colorimetric methods, respectively. The antioxidant activities were assessed through free radical scavenging assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) methods. Intracerebroventrical (i.c.v) injection of $A{\beta}$ 1-42 was used to induce AD in male ICR mice, followed by administrations of 5, 10 or 20 mg/kg AK on a daily. Animals were subjected to short and long term memory behavior in Y-maze and passive avoidance test. Results : The total polyphenol and flavonoids contents of the AK extract were $88.73{\pm}6.36mg$ gallic acid equivalent/g, $84.21{\pm}5.04mg$ rutin equivalent/g, respectively. The assays of DPPH and ABTS revealed that AK extract in treated concentrations (31.25, 62.5, 125, 250, 500, $1000{\mu}g/m{\ell}$) increased antioxidant activity in a dose-dependent manner. Oral administration of AK extract significantly reversed the $A{\beta}$ 1-42-induced decreasing of the spontaneous alternation in the Y-maze test and $A{\beta}$ 1-42-induced shorting of the step-through latency in the passive avoidance test. Conclusions : The findings suggest that AK indicated the antioxidant protective effects against $A{\beta}$-induced memory deficits, and therefore a potential lead natural therapeutic drug or agent for AD.