Browse > Article
http://dx.doi.org/10.6564/JKMRS.2022.26.1.017

High-pressure NMR application for amyloid-beta peptides  

Kim, Jin Hae (Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of the Korean Magnetic Resonance Society / v.26, no.1, 2022 , pp. 17-20 More about this Journal
Abstract
High-pressure (HP) NMR is a versatile tool to investigate diverse features of proteins. This technique has been particularly powerful to elucidate structural dynamics that only populates sufficiently in a pressurized condition. Amyloidogenic proteins, which are prone to aggregate and form amyloid fibrils, often maintains highly dynamic states in its native or aggregation-prone states, and HP NMR contributed much to advance our understandings of the dynamic behaviors of amyloidogenic proteins and the molecular mechanisms of their aggregation. In this mini review, we therefore summarize recent HP NMR studies on amyloid-beta (Aβ), the representative amyloidogenic intrinsically disordered protein (IDP).
Keywords
high-pressure NMR; amyloid-beta; protein aggregation; protein dynamics; NMR spectroscopy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. J. Rosenman, N. Clemente, M. Ali, A. E. Garcia, and C. Wang, Chem. Commun. 54, 4609 (2018)   DOI
2 C. A. Barnes, A. J. Robertson, J. M. Louis, P. Anfinrud, and A. Bax, J. Am. Chem. Soc. 141, 13762 (2019)   DOI
3 B. Kim and J. H. Kim, J. Kor. Mag. Reson. Soc. 24, 91 (2020)   DOI
4 D. J. Rosenman, C. Wang, and A. E. Garcia, J. Phys. Chem. B 120, 259 (2016)   DOI
5 S. P. B. Vemulapalli, S. Becker, C. Griesinger, and N. Rezaei-Ghaleh, J. Phys. Chem. Lett. 12, 9933 (2021)   DOI
6 P. Kulkarni, et al., Protein Sci. 27, 1557 (2018)   DOI
7 K. Madhurima, B. Nandi, and A. Sekhar, Open Biol. 11, 210012 (2021)   DOI
8 A. Garcia-Pino, et al., Cell 142, 101 (2010)   DOI
9 H. Y. J. Fung, M. Birol, and E. Rhoades, Curr. Opin. Struct. Biol. 49, 36 (2018)   DOI
10 M. P. Williamson and R. Kitahara, Biochim. Biophys. Acta 1867, 350 (2019)   DOI
11 J. Roche, C. A. Royer, and C. Roumestand, Prog. Nucl. Magn. Reson. Spectrosc. 102, 15 (2017)   DOI
12 C. Dubois, I. Herrada, P. Barthe, and C. Roumestand, Molecules 25, (2020)
13 R. W. Peterson and A. J. Wand, Rev. Sci. Instrum. 76, 094101 (2005)   DOI
14 C. Charlier, et al., Proc. Natl. Acad. Sci. U. S. A. 115, E4169 (2018)   DOI
15 C. Charlier, J. M. Courtney, P. Anfinrud, and A. Bax, J. Phys. Chem. B 122, 11792 (2018)   DOI
16 F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 86, 27 (2017)   DOI
17 L. M. Nguyen and J. Roche, J. Magn. Reson. 277, 179 (2017)   DOI
18 C. E. Munte, M. Beck-Erlach, W. Kremer, J. Koehler, and H. R. Kalbitzer, Angew. Chemie - Int. Ed. 52, 8943 (2013)   DOI
19 N. S. De Groot, F. X. Aviles, J. Vendrell, and S. Ventura, FEBS J. 273, 658 (2006)   DOI
20 J. Oroz, J. H. Kim, B. J. Chang, and M. Zweckstetter, Nat. Struct. Mol. Biol. 24, 407 (2017)   DOI
21 M. Beck Erlach, et al., J. Phys. Chem. B 118, 5681 (2014)   DOI
22 J. Roche, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 6945 (2012)   DOI
23 I. A. Cavini, et al., Chem. Commun. 54, 3294 (2018)   DOI
24 J. Roche, J. Ying, A. S. Maltsev, and A. Bax, ChemBioChem 14, 1754 (2013)   DOI