• 제목/요약/키워드: Beta-Glucan

Search Result 624, Processing Time 0.025 seconds

A Specific Pullulanase for ${\alpha}$-1,6-Glucosidic Linkage of Glucan from Thermus caldophilus

  • Moon-Jo Lee;June-Ki Kim;Kyung-Soo Nam;Jin-Woo Park;Cher-Won Hwang;Dong-Soo Kim;Cheorl-Ho Kim
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.26-34
    • /
    • 1999
  • A thermostable pullulanase has been isolated and purified from Thermus caldophilus GK-24 to a homogeneity by gel-filtration and ion-exchange chromatography. The specific activity of the purified enzyme was 431-fold increase from the crude culture broth with a recovery of 11.4%. The purified enzyme showed $M_{r}$ of 65 kDa on denaturated and natural conditions. The pI of the enzyme was 6.1 and Schiff staining was negative, suggesting that the enzyme is not a glycoprotein. The enzyme was most active at pH 5.5. The activity was maximal at $75^{\cire}C$ and stable up to $95^{\cire}C$ for 30 min at pH 5.5. The enzyme was stable to incubation from pH 3.5 to pH 8.0 at $4^{\cire}C$ for 24hr. The presence of pullulan protected the enzyme from heat inactivation, the extent depending upon the substrate concentration. The activity of the enzyme was simulated by $Mn^{2+}$ ion, }$Ni^{2+}$, $Ca^{2+}$, $Co^{2+}$ ions. The enzyme hydrolyzed the ${\alpha}$-1,6-linkages of amylopectin, glycogens, ${\alpha}$, ${\beta}$-limited dextrin, and pullulan. The enzyme caused the complete hydrolysis of pullulan to maltotriose and the activity was inhibited by $\alpha$, $\beta$, or $\gamma$-cyclodextrins. The $NH_{2}$-terminal amino acid sequence [(Ala-Pro-Gln-(Asp of Tyr)-Asn-Leu-Leu-Xaa-ILe-Gly-Ala(Ser)] was compared with known sequences of various sources and that was compared with known sequences of various sources and that was different from those of bacterial and plant enzymes, suggesting that the enzymes are structurally different.

  • PDF

Isolation of Amylolytic Bifidobacterium sp. Int-57 and Characterization of Amylase

  • Ji, Geun-Eog;Han, Hee-Kyung;Yun, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 1992
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic microorganisms. The distribution of amylolytic microorganisms in the human large intestinal tract was investigated in various individuals of differing ages using anaerobic culture techniques. A large percentage of the amylolytic microorganisms present belonged to the Genus Bifidobacteria. The number of Bifidobacteria increased significantly at two years of age. Adults and children above 2 years old carried about $0.8{\times}10^9-2.0{\times}10^{10}$ colony forming units (CFU/gram) of amylolytic Bifidobacteria. Among these amylolytic Bifidobacteria, Int-57 was chosen for further studies. Between 65% and 85% of the amylase produced was secreted and the remaining amylase was bound to the cell wall facing the outside. Amylase production could be induced by starch in a stable form. When cells were grown on maltose or glucose, amylase production was much lower than on starch and amylase activity disappeared after 24 hours growth on these media. Partially purified enzymes showed optimum activity at a temperature of $50^{\circ}C$ and at an optimum pH of 5.5, respectively. Heat treatment at $70^{\circ}C$ for 30 minutes almost completely inactivated amylase. The hydrolysis products of starch were mainly maltose and maltotriose. Soluble starch, amylose, amylopectin, and $\gamma$-cyclodextrin($\gamma$-CD) were easily hydrolyzed. The rate of hydrolysis of $\alpha$-CD and $\beta$-CD was slower than that of $\gamma$-CD. Carboxymethyl cellulose, $\beta$-1, 3-glucan and inulin were not hydrolyzed.

  • PDF

Evaluation the Effects of Short Term Intake Avena sativa Extracts on Blood Glucose and Cholesterol Level (단기간 귀리 추출물 섭취의 혈당 및 콜레스테롤 저하 효과 평가)

  • Kim, Hana;Lee, Insoo;Shin, Kyungsook;Yoon, Soonkyu;Lee, Buhyung;Yoon, Seungkyu;Choi, Jinwoo;Suh, In Bum
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • Recently, studies about various natural extracts to help control blood glucose has been in progress. Avena sativa is well known to have various physilogical effects. Especially, ${\beta}$-glucan has effect about lowering blood glucose level and prevent cardiovascular dz and adult dz related to obesity. In this study we evaluated the effect of Down and control (BM pharmaceutical) which is consist of commercialized Avena sativa fextracts on blood glucose and cholesterol, 6weeks, randomized, double-blind, placebo-controlled trials. The results show not significantly different in all blood index test group from control group, but in glycated albumin decreased 50.33% for test group, decreased 37.91% for control group, in triglyceride decreased 7.51% for test group, increased 3.98 for control group and we can observed Avena sativa has blood glucose and triglyceride lowering effect in some.

The Effects of CD-product Specificity upon the Enzyme [CGTase] Reaction Condition (효소 [CGTase : Cyclodextrin glucanotransferase]의 반응 조건이 산물 [CD : Cyclodextrin]의 특이성에 미치는 영향)

  • 최희욱;홍순강
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.164-167
    • /
    • 2004
  • Cyclodextrin glucanotransferase (EC 2.4.1.19, abbreviated as CGTase) is one of the most applied industrial enzymes that produces cyclodextrins from starch and related ${\alpha}$-1,4-glucans by intramolecular transglycosylation reaction upon Ca$\^$2+/ dependent manner. The reaction of CLEC, ${\alpha}$-CGTases from Bacillus macerans with the soluble starch as a substrate reveals that the surfactants (SDS, N-octyl-${\beta}$-D-glucoside) significantly affect not only the overall products of CDs but also their selectivity. The surfactants (SDS, Lubrol PX) trigger the increase of ${\alpha}$-CD production, but Triton x-100 and Tween 80 suppress ${\alpha}$-CD specificity. Organic solvents (dimethyl sulfoxide, formamide, 2-methyl-2,4-pentandiol, and ethylene glycol) also cause changes of total product and product selectivity.

Effect of Colored Barley Flours on Quality Characteristics of Fermented Yogurt by Lactobacillus spp.

  • Lee, Nayoung;Lee, Mi-Ja
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Quality characteristics of yogurt with added colored barely flour was investigated during fermentation by lactic acid bacteria. Chemical properties such as moisture, crude protein, starch, ash and ${\beta}$-glucan contents was measured. pH, acidity, brix, Hunter color value and growth of lactic acid bacteria in yogurt was investigated during fermentation by L. acidophilus, L. bulgaricus, and S. thermophilus mixed culture. Crude protein contents of Daeanchal and Boseokchal was 16.16 and 12.17%, respectively. Starch contents of daeanchal were shown lower score. The pH of yogurt by addition of barley flour (Daeanchal) addition 0 and 20% were 6.66 and 6.40, respectively. The pH of yogurt supplemented with barley flour tended to be lower than before control which was not added barely flours and oligosaccharide in yogurt. Titratable acidity of yogurt added barley flour was higher compared with that of control. Brix of yogurt was decreased during fermentation by lactic acid bacteria. Lightness of yogurt added barley flour (Daeanchal) addition 0 and 20% were 83.25 and 69.83, respectively. The original microbial population of the yogurt during 0, 5, 8, and 15 hr fermentation were 7.48, 7.79, 8.15, and 8.71 Log CFU/g, respectively. Moreover, the addition of colored barley flour was to promote the proliferation of lactic acid bacteria in yogurt. In our research, addition of colored barley flours added into the yogurt may also have contributed to growth of lactic acid bacteria.

Effects of Probiotic and Prebiotic on Average Daily Gain, Fecal Shedding of Escherichia Coli, and Immune System Status in Newborn Female Calves

  • Roodposhti, Pezhman Mohamadi;Dabiri, Najafgholi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1255-1261
    • /
    • 2012
  • Thirty two Holstein female calves (initial body weight = $40{\pm}3.0$ kg) were used to investigate the effects of probiotic and prebiotic on average daily gain (ADG), fecal E. coli count, white blood cell count, plasma IgG1 level and cell-mediated immune response to injection of phytohemagglutinin in suckling female calves. Calves were assigned randomly to one of the four treatments, including whole milk without additives (control), whole milk containing probiotic, whole milk containing prebiotic and whole milk containing probiotic and prebiotic (synbiotic). Average daily gain was greater in calves fed probiotic, prebiotic and synbiotic at weeks 6, 7 and 8 (p<0.05). E. coli count was significantly lower in calves fed probiotic, prebiotic and synbiotic on d 56 (p<0.05). There was no significant difference between treatments in blood samples and cell-mediated response. This study showed that addition of probiotic, prebiotic and combination of these additives to milk enhanced ADG and reduced fecal E. coli count in preruminant calves.

Characterization of the Four GH12 Endoxylanases from the Plant Pathogen Fusarium graminearum

  • Habrylo, Olivier;Song, Xinghan;Forster, Anne;Jeltsch, Jean-Marc;Phalip, Vincent
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1118-1126
    • /
    • 2012
  • Four putative GH12 genes were found in the Fusarium graminearum genome. The corresponding proteins were expressed in Escherichia coli, purified, and evaluated. FGSG_05851 and FGSG_11037 displayed high activities towards xyloglucan ($V_{max}$ of 4 and $11{\mu}mol/min$, respectively), whereas FGSG_07892 and FGSG_16349 were much less active with this substrate (0.081 and $0.004{\mu}mol/min$, respectively). However, all four of these enzymes had a similar binding affinity for xyloglucan. Xyloglucan was the substrate preferred by FGSG_05851, in contrast to the three other enzymes, which preferred ${\beta}$-glucan or lichenan. Therefore, FGSG_05851 is a xyloglucan-specific glucanase (E.C. 3.2.1.151) rather than an endoglucanase (E.C. 3.2.1.4) with broad substrate specificity. FGSG_11037 displayed a peculiar behavior in that the xyloglucan binding was highly cooperative, with a Hill coefficient of 2.5. Finally, FGSG_05851 essentially degraded xyloglucan into hepta-, octa-, and nonasaccharides, whereas the three other enzymes yielded hepta- and octa-saccharides as well as larger molecules.

Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus barcinonensis

  • Asha, Balachandrababu Malini;Revathi, Masilamani;Yadav, Amit;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1501-1509
    • /
    • 2012
  • A novel bacterial strain, MG7, with high cellulase activity was isolated and identified by morphological characteristics and molecular phylogeny analysis as Paenibacillus barcinonensis. Maximum production of cellulase by MG7 was observed at pH 7.0 and $35^{\circ}C$. The enzyme was purified with a specific activity of 16.88 U/mg, the cellulase activity was observed in a zymogram, and its molecular mass (58.6 kDa) was confirmed by SDS-PAGE. The purified enzyme showed maximum activity at pH 6.0 and $65^{\circ}C$ and degraded cellulosic substrates such as carboxy methyl cellulose (CMC), Avicel, filter paper, and ${\beta}$-glucan. The enzyme showed stability with 0.5% concentration of various surfactants. The $K_m$ and $V_{max}$ of cellulase for CMC and Avicel were found to be 0.459mg/ml and 10.46mg/ml/h, and 1.01 mg/ml and 10.0 mg/ml/h, respectively. The high catalytic activity and its stability to temperature, pH, surfactants, and metal ions indicated that the cellulase enzyme by MG7 is a good candidate for biotechnological applications.

Molecular Cloning and Characterization of Two Major Endoglucanases from Penicillium decumbens

  • Wei, Xiao-Min;Qin, Yu-Qi;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.265-270
    • /
    • 2010
  • Two major endoglucanase genes (cel7B and cel5A) were cloned from Penicillium decumbens 114-2 using the method of modified thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The result of Southern blotting suggested that P. decumbens has a single copy of the cel5A gene and a single copy of the cel7B gene in its chromosomal DNA. The expression levels of cel5A and cel7B were determined by means of real-time quantitative PCR, suggesting that the two genes were coordinately expressed, and repressed by glucose and induced by cellulose. Both endoglucanase genes were expressed in Saccharomyces cerevisiae and the recombinant proteins were purified. The recombinant Cel7B and Cel5A were both optimally active at $60^{\circ}C$ and pH 4.0. The recombinant Cel7B showed more than 8-fold, 30-fold, and 5-fold higher enzyme activities toward carboxymethyl cellulose, barley $\beta$-glucan, and PASC, respectively, in comparison with that of Cel5A. However, their activities toward pNPC and Avicel showed minor differences. The results suggested that Cel7B is a strict endoglucanase, whereas Cel5A showed processivity because of its relative higher ability to hydrolyze the crystal cellulose.

A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease

  • Kim, Young Ock;Lee, Sang Won;Kim, Jin Seong
    • Journal of Mushroom
    • /
    • v.12 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • Mushrooms are considered not only as food but also for source of physiologically beneficial medicines. The culinary-medicinal mushrooms may important role in the prevention of age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Hericium erinaceus (H. erinaceus), is edible mushrooms, is a parasitic fungus that grows hanging off of logs and trees and well established candidate for brain and nerve health. H. erinaceus contains high amounts of antioxidants, beta-glucan, polysaccharides and a potent catalyst for brain tissue regeneration and helps to improve memory and cognitive functions. Its fruiting bodies and the fungal mycelia exhibit various pharmacological activities, including the enhancement of the immune system, antitumor, hypoglycemic and anti-aging properties. H. erinaceus stimulates the synthesis of Nerve Growth Factor (NGF) which is the primary protein nutrient responsible for enhancing and repairing neurological disorders. Especially hericenones and erinacines isolated from its fruitin body stimulate NGF, synthesis. This fungus is also utilized to regulate blood levels of glucose, triglycerides and cholesterol. H. erinaceus can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro, in vivo and clinical trials for neurodegerative disease.