• Title/Summary/Keyword: Beta crystal

Search Result 451, Processing Time 0.022 seconds

Fe-doped beta-tricalcium phosphate; crystal structure and biodegradable behavior with various heating temperature (Fe 이온 치환 beta-tricalcium phosphate의 하소 온도에 따른 미세구조 및 분해 특성)

  • Yoo, Kyung-Hyeon;Kim, Hyeonjin;Sun, Woo Gyeong;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.244-250
    • /
    • 2020
  • β-Tricalcium phosphate (β-TCP, Ca3(PO4)2) is a kind of biodegradable calcium phosphate ceramics with chemical and mineral compositions similar to those of bone. It is a potential candidate for bone repair surgery. To improve the bioactivity and osteoinductivity of β-TCP, various ions doped calcium phosphate have been studied. Among them, Iron is a trace element and its deficiency in the human body causes various problems. In this study, we investigated the effect of Fe ions on the structural variation, degradation behavior of β-TCP. Fe-doped β-TCP powders were synthesized by the coprecipitation method, and the heat treatment temperature was set at 925 and 1100℃. The structural analysis was carried out by Rietveld refinement using the X-ray diffraction results. Fe ions existed in a different state (Fe2+ or Fe3+) with different heat treatment temperatures, and the substitution sites (Ca-(4) and Ca-(5)) also changed with temperature. The degradation rate was fastest at Fe-doped β-TCP with heated at 1100℃. The cell viability behavior was also enhanced with the substitution of Fe ions. Therefore, the substitution of Fe ion has accelerated the degradation of β-TCP and improved the biocompatibility. It could be more utilized in biomedical devices.

Basic Study on P(VDF-TrFE) Smart Sensor for Monitoring Composite Structure Behaviors (복합재료구조물 거동 관찰을 위한 P(VDF-TrFE) 스마트센서의 기초연구)

  • Bae, Ji-Hun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • Poly(vinylidene fluoride-trifluoroethylene; P(VDF-TrFE)) is one of the most promising electroactive polymers with numerous application potentials in many fields of industry. Because of its good electro-mechanical properties P(VDF-TrFE) has been used for a number of sensors and actuators and also can be used for monitoring composite structure behaviors as a sensor. Three different ways (Electrical poling, annealing-cooling, and pressing) to enhance ${\beta}$-phase of P(VDF-TrFE) film were carried out. A microscopic analysis was conducted using X-ray diffraction to investigate the effect of such treatments on piezoelectric properties of P(VDF-TrFE) film. From the results, poling, annealing-cooling, and pressing were all effective to enhance ${\beta}$ crystallinity of P(VDF-TrFE) film and the maximum increase rate was 62.80% from 45.29% of the control group.

Recognition of DNA by IHF : Sequence Specifficity Mediated by Residues That Do Not Contact DNA

  • Read, Erik K.;Cho, Eun Hee;Gardner, Jeffrey F.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.35-39
    • /
    • 2001
  • The Integration Host factor (IHF) of Escherichia coli is a small, basic protein that is required for a variety of functions including site-specific recombination, transposition, gene regulation, plasmid replication, and DNA packaging. It ,is composed of two subunits that are encoded by the ihfA ($\alpha$-subunit) and ihjB ($\beta$-subunit) genes. IHF binding sites are composed of three elements called the WATCAR, TTG, and poly (dAT) elements. We have characterized IHF binding to the H site of bacteriophage λ. We have isolated suppressors that bind to altered H' sites using a challenge phage selection. Two different suppressors were isolated that changed the adjacent $\alpha$P64 and $\alpha$K65 residues. The suppressors recognized both the wild-type site and a site with a change in the WATCAR element. Three suppressors were isolated at $\beta$-E44. These suppressors bound the wild-type and a mutant site with a T:A to A:T change (H44A) in the middle of the TIR element. Site-directed mutagenesis was used to make several additional changes at $\beta$E44. The wild-type and $\beta$E44D mutant could not bind the wild-type site but were able to bind the H44A mutant site. Other mutants with neutral, polar, or a positive charge at $\beta$E44 were able to repress both the wild-type and H44A sites. Examination of the IHF crystal structure suggests that the ability of the wild-type and $\beta$E44D proteins to discriminate between the T:A and A:T basepairs is due to indirect interactions. The $\beta$-E44 residue does not contact the DNA directly. It imposes binding specificity indirectly by interactions with residues that contact the DNA. Details of the proposed interactions are discussed.

  • PDF

Spatial variation in quality of Ga2O3 single crystal grown by edge-defined film-fed growth method (EFG 방법으로 성장한 β-Ga2O3 단결정의 영역별 품질 분석)

  • Park, Su-Bin;Je, Tae-Wan;Jang, Hui-Yeon;Choi, Su-Min;Park, Mi-Seon;Jang, Yeon-Suk;Moon, Yoon-Gon;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.121-127
    • /
    • 2022
  • β-Gallium oxide (Ga2O3), an ultra-wide bandgap semiconductor, has attracted great attention due to its promising applications for high voltage power devices. The most stable phase among five different polytypes, β-Ga2O3 has the wider bandgap of 4.9 eV and higher breakdown electric field of 8 MV/cm. Furthermore, it can be grown from melt source, implying higher growth rate and lower fabrication cost than other wide bandgap semiconductors such as SiC, GaN and diamond for the power device applications. In this study, β-Ga2O3 bulk crystals were grown by the edge-defined film-fed growth (EFG) process. The growth direction and the principal surface were set to be the [010] direction and the (100) plane of the β-Ga2O3 crystal, respectively. The spectra measured by Raman an alysis could exhibit the crystal phase an d impurity dopin g in the β-Ga2O3 ingot, and the crystallinity quality and crystal direction were analyzed using high-resolution X-ray diffraction (HRXRD). The crystal quality and various properties of as-grown β-Ga2O3 ribbon was systematically analyzed in order to investigate the spatial variation in entire crystal grown by EFG method.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Crystal and Molecular Structure of 12-(2-Methoxyphenyl)-9-[(4-methylbenzene)sulfonyl]-22-oxo-13,21-dioxa-9-azapentacyclo [12.8.0.02,11.03,8.015,20]docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carbonitrile

  • Ganapathy, Jagadeesan;Damodharan, Kannan;Manickam, Bakthadoss;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.149-158
    • /
    • 2014
  • The crystal structure of the title compounds with both coumarin and sulfonamide moieties were examined. These two groups have very special for their pharmaceutical and medicinal properties have been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group $P2_1/c$ with unit cell dimension a=$8.5775(4){{\AA}$, b=$24.9943(13){\AA}$ and c=$13.7319(7){\AA}$ [alpha & gamma=$90^{\circ}$ beta=$103.558(2)^{\circ}$]. In the structure The S1 atom shows a distorted tetrahedral geometry, with O1-S1-O2 [$121.08(1)^{\circ}$] and N1-S1-C5 [$105.85(1)^{\circ}$] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect. The sum of bond angles around N1 ($354.9^{\circ}$) indicates that N1 is in $sp^2$ hybridization. The Pyridine ring adopts boat conformation and pyran rings adopt a sofa conformation. Crystal structure is stabilized by C-H...O intra molecular hydrogen bond interactions.

Synthesis, crystal structure, and thermal property of piperazine-templated copper(II) sulfate, {H2NCH2CH2NH2CH2CH2}{Cu(H2O)6}(SO4)2

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.381-385
    • /
    • 2005
  • The title compound, $\{H_2NCH_2CH_2NH_2CH_2CH_2\}\{Cu(H_2O)_6\}(SO_4)_2$, I, has been synthesized under solvo/hydrothermal conditions and their crystal structure analyzed by X-ray single crystallography. Compound I crystallizes in the monoclinic system, $P2_1/n$ space group with a = 6.852(1), b = 10.160(2), $c=11.893(1){\AA}$, ${\beta}=92.928(8)^{\circ}$, $V=826.9(2){\AA}^3$, Z = 2, $D_x=1.815g/cm^3$, $R_1=0.031$ and ${\omega}R_2=0.084$. The crystal structure of the piperazine templated Cu(II)-sulfate demonstrate zero-dimensional compound constituted by doubly protonated piperazine cations, hexahydrated copper cations and sulfate anions. The central Cu atom has a elongated octahedral coordination geometry. The crystal structure is stabilized by three-dimensional networks of the intermolecular $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reaction of compound I was analyzed to have three distinctive stages.

Growth and optic characteristics of AgGaS$_2$/GaAs single crystal thin film by hot wall epitaxy (HWE 방법에 의한 AgGaS$_2$/GaAs 단결정 박막 성장과 광학적 특성)

  • 이상열;홍광준;정준우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.281-287
    • /
    • 2002
  • The stochiometric composition of AgGaS$_2$ polycrystal source materials for the AgGaS$_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal AgGaS$_2$ has tetragonal structure of which lattice constant a$\sub$0/ and c$\sub$0/ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. AgGaS$_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal AgGaS$_2$ by the Hot Wall Epitaxy (100) system. The source and substrate temperature were 590$^{\circ}C$ and 440$^{\circ}C$ respectively. The crystallinity of the grown AgGaS$_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for AgGaS$_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}$ : 8.695${\times}$10$\^$-4/ eV/K, and ${\beta}$ = 332 K. From the photocurrent spectra by illumination of polarized light of the AgGaS$_2$/GaAs epilayer, we have found that crystal field splitting ΔCr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pain are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

A study on point defects induced with neutron irradiation in silicon wafer (중성자 조사에 의해 생성된 점결함 연구)

  • 김진현;류근걸
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.62-66
    • /
    • 2002
  • The conventional floating zone(FZ) crystal and Czochralski(CZ) silicon crystal have resistivity variations longitudinally as well as radially The resistivity variations of the conventional FZ and CZ crystal are not conformed to requirement of dopant distribution for power devices and thyristors. These resistivity variations in conventional cystals limits the reverse breakdown voltage that could be achieved and forced designers of high power diodes and thyristors to compromise the desired current-voltage characteristics. So to produce high Power diodes and thyristors, Neutron Transmutation Doping(NTD) technique is the one method just because NTD silicon provides very homogeneous distribution of doping concentration. This procedure involves the nuclear transmutation of silicon to phosphorus by bombardment of neutron to the crystal according to the reaction $^{30}$ Si(n,${\gamma}$)longrightarrow$^{31}$ Silongrightarrow(2.6 hr)$^{31}$ P+$\beta$$^{[-10]}$ . The radioactive isotope $^{31}$ Si is formed by $^{31}$ Si capturing a neutron, which then decays into the stable $^{31}$ P isotope (i.e., the donor atom), whose distribution is not dependent on the crystal growth parameters. In this research, neutron was irradiated on FZ silicon wafers which had high resistivity(1000~2000 Ω cm), for 26 and 8.3hours for samples of HTS-1 and HTS-2, and 13, 3.2, 2.0 hours for samples of IP-1, IP-2 and IP-3, respectively, to compare resistivity changes due to time differences. The designed resistivities were approached, which were 2.l Ωcm for HTS-1, 7.21 Ω cm for HTS-2, 1.792cm for IP-1, 6.83 Ωcm for IP-2, 9.23 Ωcm for IP-3, respectively. Point defects were investigated with Deep Level Transient Spectroscopy(DLTS). Four different defects were observed at 80K, 125K, 230K, and above 300K.

  • PDF

Crystal and Molecular Structure of Methyl 12-(3-bromophenyl)-9-[(4-methylbenzene)sulfonyl]-22-oxo-13,21-dioxa-9-azapentacyclo[12.8.0.02,11.03,8.015,20]docosa-1(14),3,5,7,15(20),16,18-heptaene-11-carboxylate

  • Kothandan, Gugan;Ganapathy, Jagadeesan;Damodharan, Kannan;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.92-102
    • /
    • 2014
  • The crystal structure of the title compounds with both coumarin and sulfonamide moieties were examined. These two groups have very special for their pharmaceutical and medicinal properties have been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group C2/c with unit cell dimension a = 28.633(3) ${\AA}$, b= 9.3215(7) ${\AA}$ and c= 24.590(2) ${\AA}$ [alpha & gamma=$90^{\circ}$ beta= $115.976(3)^{\circ}$]. In the structure The S1 atom shows a distorted tetrahedral geometry, with O1-S1-O2 [119.74 $(2)^{\circ}$] and N1-S1-C5 [$105.57(1)^{\circ}$] angles deviating from ideal tetrahedral values are attributed to the Thrope-Ingold effect. The sum of bond angles around N1 ($316.2(1)^{\circ}$) indicates that N1 is in sp2 hybridization. The Pyridine ring adopts boat conformation and pyran rings adopt a sofa conformation. The carboxylate group of atoms were disordered over two positions with site occupancy factors 0.598 (9):0.402 (9). Crystal structure and packing is stabilized by $C-H{\ldots}O$ intra and inter molecular hydrogen bond interactions.