• Title/Summary/Keyword: Best Linear Unbiased Prediction

Search Result 48, Processing Time 0.025 seconds

Genetic evaluation for economic traits of commercial Hanwoo population using single-step GBLUP

  • Gwang Hyeon Lee;Khaliunaa Tseveen;Yoon Seok Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Background: Recently, the single-step genomic best linear unbiased prediction (ssGBLUP) method, which incorporates not only genomic information but also phenotypic information of pedigree, is under study. In this study, we performed a ssGBLUP analysis on a commercial Hanwoo population using phenotypic, genotypic, and pedigree data. Methods: The test population comprised Hanwoo 1,740 heads raised in four regions of Korea, while the reference population used Hanwoo 18,499 heads raised across the country and two-generation pedigree data. Analysis was performed using genotype data generated by the Hanwoo 50 K SNP beadchip. Results: The mean Genome estimated breeding values (GEBVs) estimated using the ssGBLUP methods for carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS) were 7.348, 1.515, -0.355, and 0.040, respectively, while the accuracy of each trait was 0.749, 0.733, 0.769, and 0.768, respectively. When the correlation analysis between the GEBVs as a result of this study and the actual slaughter performance was confirmed, CWT, EMA, BFT, and MS were reported to be 0.519, 0.435, 0.444, and 0.543, respectively. Conclusions: Our results suggest that the ssGBLUP method enables a more accurate evaluation because it conducts a genetic evaluation of an individual using not only genotype information but also phenotypic information of the pedigree. Individual evaluation using the ssGBLUP method is considered effective for enhancing the genetic ability of farms and enabling accurate and rapid improvements. It is considered that if more pedigree information of reference population is collected for analysis, genetic ability can be evaluated more accurately.

Estimation of the Accuracy of Genomic Breeding Value in Hanwoo (Korean Cattle) (한우의 유전체 육종가의 정확도 추정)

  • Lee, Seung Soo;Lee, Seung Hwan;Choi, Tae Jeong;Choy, Yun Ho;Cho, Kwang Hyun;Choi, You Lim;Cho, Yong Min;Kim, Nae Soo;Lee, Jung Jae
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • This study was conducted to estimate the Genomic Estimated Breeding Value (GEBV) using Genomic Best Linear Unbiased Prediction (GBLUP) method in Hanwoo (Korean native cattle) population. The result is expected to adapt genomic selection onto the national Hanwoo evaluation system. Carcass weight (CW), eye muscle area (EMA), backfat thickness (BT), and marbling score (MS) were investigated in 552 Hanwoo progeny-tested steers at Livestock Improvement Main Center. Animals were genotyped with Illumina BovineHD BeadChip (777K SNPs). For statistical analysis, Genetic Relationship Matrix (GRM) was formulated on the basis of genotypes and the accuracy of GEBV was estimated with 10-fold Cross-validation method. The accuracies estimated with cross-validation method were between 0.915~0.957. In 534 progeny-tested steers, the maximum difference of GEBV accuracy compared to conventional EBV for CW, EMA, BT, and MS traits were 9.56%, 5.78%, 5.78%, and 4.18% respectively. In 3,674 pedigree traced bulls, maximum increased difference of GEBV for CW, EMA, BT, and MS traits were increased as 13.54%, 6.50%, 6.50%, and 4.31% respectively. This showed that the implementation of genomic pre-selection for candidate calves to test on meat production traits could improve the genetic gain by increasing accuracy and reducing generation interval in Hanwoo genetic evaluation system to select proven bulls.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

Estimation of genetic correlations and genomic prediction accuracy for reproductive and carcass traits in Hanwoo cows

  • Md Azizul Haque;Asif Iqbal;Mohammad Zahangir Alam;Yun-Mi Lee;Jae-Jung Ha;Jong-Joo Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.682-701
    • /
    • 2024
  • This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS (0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to moderate positive genetic correlations between reproductive and CWT traits, suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing a selection index to increase the response to the selection and identification of candidate animals, which can result in significantly increased profitability of production systems.

Genetic Trends for Laying Traits in the Brown Tsaiya (Anas platyrhynchos) Selected with Restricted Genetic Selection Index

  • Chen, D.T.;Lee, S.R.;Hu, Y.H.;Huang, C.C.;Cheng, Y.S.;Tai, C.;Poivey, J.P.;Rouvier, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1705-1710
    • /
    • 2003
  • A small body size of Brown Tsaiya laying duck is desirable to reduce maintenance requirements, so the body weight at 40 weeks of age (BW40) has to be maintained at its current level. Egg weight has to be maintained at around 65 g to meet market requirements. Eggshell strength at 40 weeks of age (ES40) must to be increased in order to maintain a low incidence of broken eggs. Thus, number of eggs laid up to 52 weeks of age (EN52) has to be increased without negative correlated response on ES40. A new linear genetic selection index was used: $I_g=a_0{\times}GEW40\;(g)+a_1{\times}GBW40\;(g)+a_2{\times}GES40\;(kg/cm^2)+a_3{\times}GEN52\;(eggs)$ where GEW40, GBW40, GES40 and GEN52 were the multitrait best linear unbiased prediction (MT-BLUP) animal model predictors of the breeding values respectively of egg weight and body weight at 40 weeks of age (EW40, BW40), ES40 and EN52. The coefficients $a_0$, $a_1$, $a_2$ and $a_3$ were calculated with constraints of 0.0 g, 0.0 g and $0.013kg/cm^2$ for expected genetic gains in EW40, BW40 and ES40 respectively and maximum gain in EN52. Since 1997, the drakes and the ducks were selected according to their own indexes, with this new genetic selection index. From G0 to G4, the average per generation predicted genetic responses in female duck were +0.05 g for EW40, +0.92 g for BW40, $+0.035kg/cm^2$ for ES40 and +2.13 eggs for EN52. Which represented respectively 0.07%, 0.06%, 0.67% and 1.0% of the means of the EW40, BW40, ES40 and EN52. For ES40 and EN52, it represented also respectively 16.1% and 21.6% of the additive genetic standard deviation of these traits. Thevse results indicated that selection of laying Brown Tsaiya by a restricted genetic selection index and with MT-BLUP animal model could be an efficient tool for improving the efficiency of egg production, increasing egg shell strength and egg number while holding egg weight and body weight constants.

The study on estimated breeding value and accuracy for economic traits in Gyoungnam Hanwoo cow (Korean cattle)

  • Kim, Eun Ho;Kim, Hyeon Kwon;Sun, Du Won;Kang, Ho Chan;Lee, Doo Ho;Lee, Seung Hwan;Lee, Jae Bong;Lim, Hyun Tae
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • This study was conducted to construct basic data for the selection of elite cows by analyzing the estimated breeding value (EBV) and accuracy using the pedigree of Hanwoo cows in Gyeongnam. The phenotype trait used in the analysis are the carcass weight (CWT), eye muscle area (EMA), backfat thickness (BFT) and marbling score (MS). The pedigree of the test group and reference group was collected to build a pedigree structure and a numeric relationship matrix (NRM). The EBV, genetic parameters and accuracy were estimated by applying NRM to the best linear unbiased prediction (BLUP) multiple-trait animal model of the BLUPF90 program. Looking at the pedigree structure of the test group, there were a total of 2,371 cows born between 2003 to 2009, of these 603 cows had basic registration (25%), 562 cows had pedigree registration (24%) and 1,206 cows had advanced registration (51%). The proportion of pedigree registered cows was relatively low but it gradually increased and reached a point of 20,847 cows (68%) between 2010 to 2017. Looking at the change in the EBV, the CWT improved from 4.992 kg to 9.885 kg, the EMA from 0.970 ㎠ to 2.466 ㎠, the BFT from -0.186 mm to -0.357 mm, and the MS from 0.328 to 0.559 points. As a result of genetic parameter estimation, the heritability of CWT, EMA, BFT, and MS were 0.587, 0.416, 0.476, and 0.571, respectively, and the accuracy of those were estimated to be 0.559, 0.551, 0.554, and 0.558, respectively. Selection of superior genetic breed and efficient improvement could be possible if cow ability verification is implemented by using the accurate pedigree of each individual in the farms.

The effectiveness of genomic selection for milk production traits of Holstein dairy cattle

  • Lee, Yun-Mi;Dang, Chang-Gwon;Alam, Mohammad Z.;Kim, You-Sam;Cho, Kwang-Hyeon;Park, Kyung-Do;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.382-389
    • /
    • 2020
  • Objective: This study was conducted to test the efficiency of genomic selection for milk production traits in a Korean Holstein cattle population. Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads with single nucleotide polymorphism information) were used to estimate breeding value by single step best linear unbiased prediction. Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk production traits. The estimated generation intervals of sire for the production of bulls (LSB) and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% in heifers without test records. The difference in the reliability between GEBV and EBV was especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain increased by about 24.2% in heifers without test records and by 35% in young bulls without progeny records. Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and genomic selection was more effective in the selection of young bulls and heifers without test records.

Selection for Duration of Fertility and Mule Duck White Plumage Colour in a Synthetic Strain of Ducks (Anas platyrhynchos)

  • Liu, H.C.;Huang, J.F.;Lee, S.R.;Liu, H.L.;Hsieh, C.H.;Huang, C.W.;Huang, M.C.;Tai, C.;Poivey, J.P.;Rouvier, R.;Cheng, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.605-611
    • /
    • 2015
  • A synthetic strain of ducks (Anas platyrhynchos) was developed by introducing genes for long duration of fertility to be used as mother of mule ducklings and a seven-generation selection experiment was conducted to increase the number of fertile eggs after a single artificial insemination (AI) with pooled Muscovy semen. Reciprocal crossbreeding between Brown Tsaiya LRI-2 (with long duration of fertility) and Pekin L-201 (with white plumage mule ducklings) ducks produced the G0. Then G1 were intercrossed to produce G2 and so on for the following generations. Each female duck was inseminated 3 times, at 26, 29, and 32 weeks of age. The eggs were collected for 14 days from day 2 after AI. Individual data regarding the number of incubated eggs (Ie), the number of fertile eggs at candling at day 7 of incubation (F), the total number of dead embryos (M), the maximum duration of fertility (Dm) and the number of hatched mule ducklings (H) with plumage colour were recorded. The selection criterion was the breeding values of the best linear unbiased prediction animal model for F. The results show high percentage of exhibited heterosis in G2 for traits to improve (19.1% for F and 12.9% for H); F with a value of 5.92 (vs 3.74 in the Pekin L-201) was improved in the G2. Heritabilities were found to be low for Ie ($h^2=0.07{\pm}0.03$) and M ($h^2=0.07{\pm}0.01$), moderately low for Dm ($h^2=0.13{\pm}0.02$), of medium values for H ($h^2=0.20{\pm}0.03$) and F ($h^2=0.23{\pm}0.03$). High and favourable genetic correlations existed between F and Dm ($r_g=0.93$), between F and H ($r_g=0.97$) and between Dm and H ($r_g=0.90$). The selection experiment showed a positive trend for phenotypic values of F (6.38 fertile eggs in G10 of synthetic strain vs 5.59 eggs in G4, and 3.74 eggs in Pekin L-201), with correlated response for increasing H (5.73 ducklings in G10 vs 4.86 in G4, and 3.09 ducklings in Pekin L-201) and maximum duration of the fertile period without increasing the embryo mortality rate. The average predicted genetic response for F was 40% of genetic standard deviation per generation of selection. The mule ducklings' feather colour also was improved. It was concluded that this study provided results for a better understanding of the genetics of the duration of fertility traits in the common female duck bred for mule and that the selection of a synthetic strain was effective method of improvement.