• Title/Summary/Keyword: Ber Performance

Search Result 1,578, Processing Time 0.027 seconds

BER Performance Analysis of SFH System Using Reed-Solomon Code and Side Information (Reed-Solomon Code와 Side Information을 이용한 SFH 시스템의 BER 성능 분석)

  • 한상진;김용철;강경원
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.137-140
    • /
    • 2000
  • In this paper. we analyzed the performance of a SFH (slow frequency hopping) system under partial-band jamming, multiple access interference and wide-band random noise. For the correction of burst errors due to channel hit, Reed-Solomon coding followed by block interleaving is employed. Errors-and-erasures decoding with side information is exploited to enhance the correctional capability. We derived a closed-form solution for the BER estimation. Errors resulting from random noise and erasures resulting from burst interference are separately analyzed and finally BER is computed due to these composite noise sources. Estimated BER performance is verified by computer simulation.

  • PDF

BER Performance Analysis of Intelligent Reflecting Surface NOMA for Strongest Channel Gain User

  • Kyuhyuk, Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.84-89
    • /
    • 2023
  • Recently, the sixth generation (6G) networks have become tremendous research topics. Intelligent reflecting surface (IRS) technologies have been envisioned, to increase spectrum and energy efficiency for the fifth generation (5G) mobile networks, towards the sixth generation (6G) communications. In this paper, especially for the strongest channel gain user, we investigate the bit-error rate (BER) of non-orthogonal multiple access (NOMA) systems with intelligent reflecting surface (IRS). First, we derive a BER expression in a closed-form of Q functions. Second, we investigate the BER performance improvement of IRS NOMA systems over NOMA systems versus the power allocation. Moreover, we analyze the BER performance improvement of IRS NOMA systems over NOMA systems versus the number of IRS devices. In results, NOMA equipped with IRS technologies could play an important role in the paradigm shift from 5G mobile networks to 6G mobile networks.

Performance Analysis of Multi-Carrier CDMA System by Co-Channel Interference Cancellation Technique in Mobile Communication Channel (이동 통신 채널에서 동일 채널 간섭 제거 기법에 의한 Multi-Carrier CDMA 시스템의 성능 분석)

  • 이영춘;박기식;조성언;조성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1056-1061
    • /
    • 2001
  • In this paper we have evaluated the degree of performance improvement in Multi-Carrier CDMA system adopting CCI canceller against MUI under mobile channel coexisting MU which is a major interference degrading the performance of Multi-carrier CDMA system. As a result of analysis, BER performance was improved by adopting CCI canceller and it was found that the amount of performance improvement was largely increased as Eb/No became higher. As an example, in case that data service BER = 10$^{-5}$ must be achieved with $E_{b/}$ $N_{o}$ = 12 ㏈, 4 users could be supported without CCI canceller while 30 users could be supported with CCI canceller, Also, we found that performance improving effect of 5$\times$10$^{-3}$ in a point of view BER could be achieved by adopting CCI canceller with fixed $E_{b/}$ $N_{o}$. o/. o/.

  • PDF

Transmission Performance of Half-Symbol-Rate-Carrier Offset QPSK Modulation in Band-limited Channels

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.152-156
    • /
    • 2009
  • This paper examines the BER performance of the recently proposed half-symbol-rate-carrier (HSRC) offset quadrature phase-shift-keying (OQPSK) receiver for high-speed data communication. A modified demodulation technique using a bit-time period signal integration, the bit-error-rate (BER) performance of the HSRC-OQPSK signal improves more than 4dB compared to that of a demodulation technique using a symbol-time period integration. This paper also examines the BER performance of modified demodulation with various band-limited channels modeled using low-pass filters, and the three different data-rate systems are simulated and compared with the performance of the system using the conventional demodulation technique.

Group-indexed orthogonal frequency division multiplexing index modulation aided performance trade off

  • Anushya, Thomas Wilfred Edison Athisaya;Laxmikandan, Thangavelu;Manimekalai, Thirunavukkarasu
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • In this study, a novel group-indexed orthogonal frequency division multiplexing index modulation (OFDM-IM) scheme is proposed to achieve a tradeoff between spectral efficiency (SE) and bit-error-rate (BER) performance. In the proposed scheme, the total subcarriers in a group are divided into subgroups, and additional bits are transmitted by subgroup indexing, unlike the conventional OFDM-IM scheme, which uses index bits to select active subcarriers. With the proposed scheme, the additional degree of freedom provided by the number of active subgroups selected provides a tradeoff between spectral efficiency and BER performance. Decoding is performed in steps to reduce computional complexity in the decoder design. Simulaton results show that the number of active subgroups selected influences the proposed scheme's performance in terms of energy efficiency, spectral efficiency, and BER performance.

On Design and Performance Analysis of Asymmetric 2PAM: 5G Network NOMA Perspective (비대칭 2PAM의 설계와 성능 분석: 5G 네트워크의 비직교 다중 접속 관점에서)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.24-31
    • /
    • 2020
  • In non-orthogonal multiple access (NOMA), the degraded performance of the weaker channel gain user is a problem. In this paper, we propose the asymmetric binary pulse amplitude modulation (2PAM), to improve the bit-error rate (BER) performance of the weaker channel user in NOMA with the tolerable BER loss of the stronger channel user. First, we design the asymmetric 2PAM, calculate the total allocated power, and derive the closed-form expression for the BER of the proposed scheme. Then it is shown that the BER of the weaker channel user improves, with the small BER loss of the stronger channel user. The superiority of the proposed scheme is also validated by demonstating that the signal-to-noise ratio (SNR) gain of the weaker channel user is about 10 dB, with the SNR loss of 3 dB of the stronger channel user. In result, the asymmetric 2PAM could be considered in NOMA of 5G systems. As a direction of the future research, it would be meaningful to analyze the achievable data rate for the propsed scheme.

Bit Error Rate Improvement Scheme for Transmitted Reference UWB Systems (Transmitted Reference UWB 시스템을 위한 비트오율 향상 기법)

  • Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.540-547
    • /
    • 2009
  • In this paper, we propose a transceiver structure that can effectively improve BER(Bit Error Rate) performance for TR-UWB (Transmitted Reference Ultra Wide Band) systems based on impulse radio. Unlike coherent UWB systems that are too complex for practical implementation while having good BER performances, the complexity of the TR-UWB systems is quite low since they transmit data with the corresponding reference signals and demodulate the data through correlation using these received signals. However, the BER performance in the conventional TR-UWB systems is affected by SNR (Signal-to-Noise Ratio) of the reference templates used in the correlator. To this end, we propose a receiver structure that can effectively improve the BER performance by increasing the SNR of reference templates. Simulation results reveal that the proposed scheme achieves significant BER improvement as compared to the conventional TR-UWB systems.

A Study on the Performance Improvement of Turbo Coded OFDM Systems Considering Frequency Offset (주파수 오프셋을 고려한 Tued OFDM 시스템의 성능 개선에 관한 연구)

  • 이영춘;박기식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.908-915
    • /
    • 2001
  • In this paper, it is analyzed theoretically that the performance degradation, caused by carrier frequency offset, in an OFDM/M-ary PSK system. Then, when Turbo coding is adopted to an OFDM/M-ary PSK system, the degree of performance enhancement is evaluated. Finally, the maximum frequency offset is calculated to satisfy the BER performance required in a Turbo coded OFDM/M-ary PSK system. As results of analysis, it is shown that the more the number of M-ary is, the worse the BER performance is. Moreover, 7dB, 9dB, and 17dB of $E_b/N_o$ are required in QPSK, 8PSK and 16PSK systems, respectively in order to satisfy the error performance, $BER=10^{-3}$ for voice communication. If $E_b/N_o$ are 10㏈ and 15㏈, the frequency offset should be below 0.05 and 0.075, respectively, for voice communication. When Turbo coding is adopted to an OFDM/M-ary PSK system, the less the number of M-ary is, the greater the performance enhancement of Turbo coding is. If the number of a M-ary system of the system is below 16, it is found that required $E_b/N_o$ is about 8dB to satisfy $BER=10^{-5}$ Moreover, in the system the Turbo coding scheme, voice communication is available with greatly low$E_b/N_o$, and 8dB of $E_b/N_o$ is enough for data communication regardless of the permission range of frequency offset.

  • PDF

Closed-form BER expressions for performance of Alamouti STC (Alamouti 공간시간부호의 성능분석을 위한 closed-form BER 표현)

  • Kong Hyung-Yun;Khuong Ho Van
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.673-678
    • /
    • 2005
  • Alamouti STC (Space-Time Code) is a part of the UMTS-WCDMA standard. However, up to the best of our knowledge no closed-form BER formula for this famous code exists. Evaluating its performance through simulations is time-consuming and therefore, there should be analytical BER graphs to serve as a reference which are derived in this paper for coherently BPSK-modulated data.

Design of a Low Power Turbo Decoder by Reducing Decoding Iterations (반복 복호수 감소에 의한 저전력 터보 복호기의 설계)

  • Back, Seo-Young;Kim, Sik;Back, Seo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.1-8
    • /
    • 2004
  • This paper proposes a novel algorithm for a low power turbo decoder based on reduction of number of decoding iterations, targeting power-critical mobile communication devices. Previous researches that attempt to reduce number of decoding iterations, such as CRC-aided and LLR methods, either show degraded BER performance in return for reduced complexity or require additional hardware resources for controlling the number of iterations to meet BER performance, respectively. The proposed algorithm can reduce power consumption without degrading the BER performance, and it is achieved with minimal hardware overhead. The proposed algorithm achieves this by comparing consecutive hard decision results using a simple buffer and counter. Simulation results show that the number of decoding iterations can be reduced to about 60% without degrading the BER performance in the proposed decoder, and power consumption can be saved in proportion to the number of decoding iterations.