• Title/Summary/Keyword: Bentonite grout

Search Result 27, Processing Time 0.029 seconds

A study on cement-based grout for ground heat exchangers (지중 열교환기용 시멘트 그라우트에 관한 연구)

  • Lee, Dong-Ju;Baek, Hwan-Jo;Kim, Gyoung-Man
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.27-36
    • /
    • 2011
  • In this paper, the applicability of cement grout has been studied as an alternative to bentonite grout for backfill ground heat exchangers. To provide an optimal mixture design, the thermal conductivity of cement grout and bentonite grout with various mixture ratios were experimentally evaluated and compared. Numerical analyses using Fluent(FVM program) were applied to compare the thermal transfer efficiency of the cement grout with that of the bentonite grout used in the construction. Also the effective ground thermal conductivity was measured by In-situ thermal response test. The results showed that the thermal efficiency of the cement grout was better than the bentonite grout. Consequently, the cement grout could be an alternative with more thermal efficiency to bentonite grout for ground heat exchangers.

  • PDF

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao;Wang, Gui H.;Chang, Yong H.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.

Thermal conductivity and viscosity of graphite-added bentonite grout for backfilling ground heat exchanger (지중 열교환기용 뒤채움재로서 흑연을 첨가한 벤토나이트 그라우트재의 열전도도 및 점도 특성)

  • Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Bentonite-based grouting has been usually used for sealing a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand into the bentonite-based grout for enhancing heat transfer. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, the viscosity of graphite-added bentonite grout was measured to evaluate the field pumpability of the grout.

  • PDF

A Study on the Variation of Physical Properties by the Water to Cement Ratio and the Mixing Speed for Grout Materials (그라우트재의 물시멘트비 및 혼합속도에 의한 물성변화에 관한 연구)

  • 천병식;김진춘;장의웅;송성호;이준우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.445-452
    • /
    • 2001
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.

  • PDF

Study on physical characteristic of Graphite-added grout for backfilling cloed-loop groud heat exchanger (흑연(Graphite) 첨가를 통한 수직 밀폐형 지중열교환기 뒤채움재의 열전도 특성 향상 연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.579-582
    • /
    • 2009
  • The thermal conductivity and viscosity(or workability) of graphite-added bentonite grouts and cementitious grouts have been evaluated and compared to determine the suitability of these materials for backfilling vertical boreholes of ground heat exchangers. Seven bentonite grouts from different product sources and a portland cement grout with various mixture ratios were considered in this paper. As a new additive for grout, we choose graphite which has high thermal conductivity. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or with an addition of Graphite compared with that of silica sand. In case of cementitious grout also increase the thermal conductivity and decrease the workability dramatically though an addition of Graphite. Therefore, we cautiously select the amount of graphite and mixture ratio of bentonite and cement considering not only thermal conductivity but also viscosity for the optimum condition of backfilling material.

  • PDF

Physical Properties Variation of Grout Materials Based on the Water to Cement Ratio and the Mixing Speed (물시멘트비 및 혼합속도에 따른 주입재의 물성변화 연구)

  • Chun, Byung-Sik;Kim, Jin-Chun;Jang, Bui-Woong;Lee, Jun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.87-96
    • /
    • 2000
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, method of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as the speed of grout mixer increase. In this paper, the specification of construction was derived by estimating physical characteristics of CB grout materials and confirming the sate of dispersion. The results show that the engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed.

  • PDF

Experimental Study on Thermal Conductivity and Viscosity of Grouts for Backfilling Ground Heat Exchanger (수직 밀폐형 자중 열교환기용 뒤채움재의 열전도 및 점도특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hyo-Pum;Woo, Sang-Baik
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.38-46
    • /
    • 2007
  • In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

Experimental Study on Thermal Conductivity and Viscosity of Grouts for Backfilling Ground Heat Exchanger (수직 밀페형 지증 열교환기용 뒤채움재의 열전도 및 점도특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hyo-Pum;Woo, Sang-Baik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.529-532
    • /
    • 2007
  • In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than in case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

Development of high-performance cement grout for ground heat exchangers (지중열교환기용 고성능 시멘트 그라우트 개발)

  • Lee, Dong-Chul;Yang, Hee-Jung;Jeon, Joong-Kyu;Seo, Shin-Seok;Choi, Yong-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Performance of ground-source heat pumps (GSHPs) is mainly affected by ground heat exchangers which makes up more than 40% of construction cost. Exact construction and grout as backfill are important, because it is difficult to repair after being installed. As grout materials, bentonite grout material and cement material are used In this paper, thermal conductivity according to mix proportion of cement grout has been experimentally studied. Some variables were set to evaluate thermal conductivities according to change in cement content, unit water ratio, mass per volume of fresh mortar, and aggregate types. From the experimental analysis, high performance cement grout has been proposed.

Study on physical characteristics of Graphite-added bentonite grout for backfilling closed-loop groud heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재로서 흑연(Graphite)을 첨가한 벤토나이트 그라우트재의 물리적 특성연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.179-187
    • /
    • 2009
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand to the bentonite-based grout for enhancing thermal performance. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, comparisons of viscosity between applications of graphite and silica sand as additives has been carried out. In conclusion, using graphite has thermal conductivity about three times higher than that of silica sand.

  • PDF