• Title/Summary/Keyword: Bentonite Cement

Search Result 67, Processing Time 0.029 seconds

A Study on the Fixation of Heavy Metals with Stabilized Soils in the Landfill Liner (폐기물매립지 차수재로서 고화토의 중금속 고정능력 평가에 관한 연구)

  • 노희정;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.145-149
    • /
    • 2000
  • We performed the geotechnical experiments of the hydraulic conductivity and compressive strength test with the stabilized soil in the laboratory, proved that it is useful to use the stabilized soil as an alternative for natural clay soil. Also, for mixing adding materials in the stabilized soil, it was determined that 1) the optimal mixing ratio of cement : bentonite : stabilizing agent was 90:60:1 of mass ratio(kg) for 1㎥ with soil, 2) it was also possible to use low quality bentonite(B\circled2) classified by swelling grade because of little difference from results of the hydraulic conductivity and compressive strength test with high quality bentonite(B\circled1). According to the results of the fixation ability of heavy metals(Pb$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, Zn$^{2+}$) with soil and additives, authors can conclude that the higher pH condition had the more removal efficiency of heavy metals. B\circled1 and cement had especially high removal efficiency of heavy metals in a whole pH because of high alkalinity.alinity.

  • PDF

A Study of the Bottom Ash as Environmentally Grouting Materials (Bottom Ash를 이용한 그라우팅재의 환경적 연구)

  • Doh, Young-Gon;Kwon, Hyuk-Doo;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.5-11
    • /
    • 2006
  • The purpose of this study was to examine the proper mixing ratio of ordinary portland cement and Bottom Ash to recycle the Bottom Ash, which is an industrial waste. After the evaluation, the compressive strength and durability were assessed using the mixture of completely weathered soil (Hwangto), weathered granite soil, and Bentonite. Then environmental friendliness of this mixed material was examined through heavy metal leaching method. It was found out that proper mixing ratio is 6:4, and that the 6% mixture quantity of completely weathered soil (Hwangto), weathered granite soil, and Bentonite is the most effective for compressive strength and durability It was also found out through heavy metal leaching method that the Bottom Ash could be below the standard of the Clean Water Law.

Engineering Properties of CB Cut-off Walls Mixed with GGBS (고로슬래그 미분말을 혼합한 CB 차수벽의 공학적 특성)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • For a slag-cement-bentonite (slag-CB) cut-off wall, GGBS replaces a part of the cement mixed to build a CB cut-off wall, which is used to block the flow and leakage of pollutants or groundwater; prevent seawater infiltration; and repair or reinforcement an aged embankments. Slag-CB cut-off walls are used in various applications in different fields where groundwater control is required due to its excellent characteristics. Such properties include high strength, low permeability, high durability and chemical resistance. However, despite these advantages, slag-CB cut-off walls are not extensively studied in Korea and thus are not applied in many cases. Particularly, GGBS, which replaces cement in a mixture, has different properties depending on its country of production. Consequently, it is necessary to perform various studies on slag-CB cut-off walls that use GGBS produced in Korea in order to increase its usability. This study has evaluated the bleeding rate, setting time, strength, and permeability in relation to the cement replacement rate of GGBS produced in Korea for slag-CB cut-off walls, with the aim to increase its usability. The evaluation found that slag-CB cut-off walls, made of a mixture containing GGBS produced in Korea, have a lower bleeding rate and permeability, and higher strengththan CB cut-off walls. It was also analyzed that such improved performance is more effective with a higher cement replacement rate of GGBS.

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.

Characteristics of Saturated Hydraulic Conductivity in Steel Making Slag and Sludge according to Mixing Rate of Bentonite (벤토나이트 혼합율에 따른 제강 슬래그 및 슬러지의 투수 특성 변화)

  • Woo, Won-Jae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.52-61
    • /
    • 2000
  • Permeability is important factor in the geotechnical problems, such as seepage discharge and dissipation of excess pore water pressure. The Kozeny-Carman equation works well for graded soils but serious discrepancies are found in clays. Major factor for these discrepancies is the tortuous flow path and unequal pore size. To estimate the permeability of fine grained soils, a permeability equation in which swelling potential is coupled with Kozeny-Carman equation is proposed in this study. To verify proposed equation, a series of variable head permeability test was carried out for steel making slag and sludge mixed with bentonite. The coefficients of permeability which is measured in the laboratory is compared with the values by the proposed equation. From the comparison, it is shown that the proposed equation can predict the coefficient of permeability of clays with satisfaction. As steel making slag and sludge is industry waste, it is reused as material of road foundation and cement but the rate of use is low. It mixed sodium-bentonite with high swelling property and permeability decrease effect. Then, Admixture investigates reuse possibility as liner of waste fill.

  • PDF

Developing for Reduction Technology of AMD through Coating on the Surface of Pyrite Using Minerals (천연광물을 이용한 황철석 표면 코팅을 통한 폐광산 산성배수 저감 기술 개발)

  • Yun, Hyun-Shik;Gee, Eun Do;Ji, Min Kyu;Lee, Woo Ram;Yang, Jung-Seok;Park, Young-Tae;Kwon, Hyun-ho;Ji, Won-Hyun;Kim, Kijoon;Jeon, Byong-Hun;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2011
  • In this study, the effect of surface coating on iron-sulfide mineral for preventing the product acid mine drainage(AMD) was progressed by oxidation process of sulfide minerals abandoned mine Area. Three abandoned mines, Yongdong coal mine, Sil Lim mine, and Il Koang mine were selected as a sulfide mineral resource due to higher contamination rate. Six coating agents, apatite, limestone, mangnite, dolomite, bentonite, and cement were used for preventing the AMD with $H_2O_2$ and NaClO as a oxidizing agent helping for oxidizing process on sulfide minerals. Experimental results showed that sulfide mineral surface was coated effectively. Cement has a higher ability of preventing AMD when the ratio of cement to mineralis 1:1 and experimental condition is maintaining 4Days.

A Study on the haracteristics of Grouting Material to Decrease Negative Skin Fricton (부마찰력 저감용 주입재의 특성 연구)

  • Jung, Sung-Min;Kim, Che-Min;Hwang, Jeong-Hwan;Lee, Kyung-Jun;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1104-1113
    • /
    • 2010
  • In order to reduce negative skin friction uses bitumen most plentifully. But, Bitumen is expensive very of 1.5 or more times of pile material expense. The bitumen will be able to substitute it is nescessary. It was researched that it would be able to bitumen substitutions from in products which is produced from domestic in this study. This was composed with most bentonite, added some cement. When it is used this product in the model test, the reduction ratio appear of 85% or more. In this result, this product as the reduction material is confirmed that has enough ability. Additional research leads, the product according to pile construction method must verify the reduction effect of negativ skin friction in field test.

  • PDF