• 제목/요약/키워드: Bentonite Cement

검색결과 67건 처리시간 0.03초

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao;Wang, Gui H.;Chang, Yong H.
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.279-287
    • /
    • 2020
  • This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.

그라우트재의 물시멘트비 및 혼합속도에 의한 물성변화에 관한 연구 (A Study on the Variation of Physical Properties by the Water to Cement Ratio and the Mixing Speed for Grout Materials)

  • 천병식;김진춘;장의웅;송성호;이준우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.445-452
    • /
    • 2001
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.

  • PDF

지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구 (A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems)

  • 백성권;전중규;안형준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing

  • Lima-Guerra, D.J.;Mello, I.;Resende, R.;Silva, R.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.15-26
    • /
    • 2014
  • In order to study the capacities of a new occurrence of Brazilian clay samples as partial replacements of cement, a bentonite sample was selected for utilization in the natural and modified forms for present study. The natural bentonite (BBT) was modified by anchorament of 3-aminopropyltrietoxisilane ($BBT_{APS}$) and 3,2-aminoethylaminopropyltrimetoxisilane (BBTAEAPS) in the surface of component minerals of bentonite sample. The original and organo-bentonite samples were characterized by elemental analysis, scanning electron microscopic and textural analyses. The values of micropore area were varying from $7.2m^2g^{-1}$ for the BBT to $12.3m^2g^{-1}$ for the $BBT_{AEAPS}$. The bentonite samples were characterized by the main variable proportion of bentonite in the natural and intercalated forms (2, 5, 10, 15, 20, 25, 30, and 35 % by weight of cement) in the replacement mode whiles the amount of cementations material. The workability, density of fresh concrete, and absorption of water decreased as the substitution of ordinary Portland cement by perceptual of natural and modified bentonite increased. The results reveal that workability decreased with decrease of the amount of natural bentonite in the concrete, same behavior is observed for bentonite functionalized, varying from 49 to 28 mm. The energetic influence of the interaction of calcium nitrate in the structure of blends was determined through the calorimetric titration procedure.

지중 열교환기용 시멘트 그라우트에 관한 연구 (A study on cement-based grout for ground heat exchangers)

  • 이동주;백환조;김경만
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.27-36
    • /
    • 2011
  • In this paper, the applicability of cement grout has been studied as an alternative to bentonite grout for backfill ground heat exchangers. To provide an optimal mixture design, the thermal conductivity of cement grout and bentonite grout with various mixture ratios were experimentally evaluated and compared. Numerical analyses using Fluent(FVM program) were applied to compare the thermal transfer efficiency of the cement grout with that of the bentonite grout used in the construction. Also the effective ground thermal conductivity was measured by In-situ thermal response test. The results showed that the thermal efficiency of the cement grout was better than the bentonite grout. Consequently, the cement grout could be an alternative with more thermal efficiency to bentonite grout for ground heat exchangers.

  • PDF

저수지 제체의 보수·보강용 Cement-Bentonite 벽체의 적정혼합량 산정 (The Estimation of Appropriate Mixing Amount of Cement-Bentonite Cutoff Walls for Repair and Reinforcement of Reservoir Embankments)

  • 김태연;이봉직
    • 한국지반환경공학회 논문집
    • /
    • 제22권6호
    • /
    • pp.27-32
    • /
    • 2021
  • 최근 기후변화로 인한 집중호우 및 태풍 등으로 농업용 저수지의 설계빈도를 초과하는 호우가 빈번히 발생하고 있어 농업용 저수지와 같은 수리시설물의 안전에 대한 관심이 증가하고 있다. 현재 국내에는 17,140여 개소의 저수지가 공용 중에 있으며, 이 중 83.87%가 1970년 이전에 건설되어 저수지의 노후화에 따른 안정성 확보를 위해 저수지 제체에 다양한 공법을 활용한 보수·보강을 실시하고 있다. 그 중 cement-bentonite 벽체를 활용한 공법은 굴착과 동시에 cement와 bentonite로 이루어진 slurry로 지중연속벽체를 시공하는 공법으로 시공방법이 간편하고 시공속도가 빠르며 굴착구역을 즉시 치환함으로 차수벽체의 균질성을 확보하여 성능이 우수하다는 장점이 있다. 그러나 이와같은 장점에도 불구하고 국내에서는 적용사례가 많지 않은 실정이다. 이에 본 연구에서는 cement와 bentonite의 혼합량을 변화시켜가며 강도변화 및 투수특성 등을 구명하여 저수지 제체의 보수·보강을 위한 cement-bentonte 벽체의 적정혼합량은 cement 200kg/m3, bentonite 60~80kg/m3인 경우가 가장 적합하다는 결론을 도출하였다.

수직 밀폐형 지중 열교환기용 뒤채움재의 물리적 특성 연구 (Study on physical characteristics of grouts for backfilling ground heat exchanger)

  • 이철호;길후정;최항석;최효범;우상백
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.533-544
    • /
    • 2008
  • To obtain the physical properties of grout materials, that is the thermal conductivity and viscosity, which are used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts show that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. To investigate the performance of cement grouts, fifteen samples were prepared by varying the water/cement ratio and the amount of sand and bentonite added into the cement mortar. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

토목섬유 및 메타카올린 첨가 시멘트-벤토나이트 혼합토의 강도 특성 (The Strength Properties of Cement-Bentonite Soil Mixtures with Geosynthetics and Metakaolin)

  • 이재득;연규석;김광우;김용성
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.159-167
    • /
    • 2012
  • In the present study, an investigation has been made on the application of cement-bentonite soil mixtures as the countermeasure against leachate produced by buried animal carcasses. For this purpose, the strength characteristics of the cement-bentonite soil mixtures mixed with geotextile and metakaolin. After the mixtures with different contents of the cement (0 %, 10 %), bentonite (0 %, 5 %, 10 %, 15 %, 20 %), and weathered soil (100 %, 95 %, 90 %, 85 %, 80 %) were prepared, metakaolin and geotextile were added with different contents (metakaolin : 0 %, 5 %, 10 %, 15 %, 20 % of the cement weight; geotextile : 0 %, 0.5 %, 1 %, 1.5 %, 2 %). Experimental results suggested that the early strength of the mixture increases due to the pore filling, the hydration acceleration, and the pozzolan reaction when metakaolin of 5~10 % of the cement weight was added. In addition, the compressive strength increase when 0.5~1 % geotextile contents were added, and the above these contents, the rate of strength increase was gradually decreased because of the fibrous tangles.

벤토나이트 함량에 따른 지반 그라우팅 재료의 점성 및 블리딩 특성 분석 (Analysis of Viscosity and Bleeding Characteristics of Grouting Materials according to the Proportion of Bentonite)

  • 이종원;원조현;최현용;오태민
    • 토지주택연구
    • /
    • 제12권4호
    • /
    • pp.127-137
    • /
    • 2021
  • 그라우팅 공법은 지반 내 토목구조물 활용 시 지반 강도특성을 증진시키거나 지하공간 활용 시 차수효과를 위하여 활발하게 적용되고 있다. 최근에는 그라우팅 기밀특성을 향상시키기 위하여 벤토나이트가 시멘트 재료와 함께 활용되고 있다. 이러한 벤토나이트-시멘트 그라우팅 재료의 원활한 주입을 위해서는 주입재료의 배합비율에 따른 특성을 사전에 파악하는 것이 중요하다. 본 연구에서는 그라우팅 재료로 주로 활용되고 있는 1종 보통 포틀랜드 시멘트와 벤토나이트를 이용하여 물/시멘트 배합비율 및 벤토나이트 함량에 따른 점성도 및 블리딩 발생비율을 분석하였다. 실험결과, 물/시멘트 배합비율이 감소하거나 벤토나이트 함량이 증가할수록 점성도는 급격히 증가하고 블리딩 비율은 감소하는 반비례 경향을 보였다. 또한, 적합한 재료 선정 기준에 따라 물/시멘트 배합비율 따른 적용가능한 벤토나이트 함량을 선정하였다. 본 연구에서 분석한 벤토나이트-시멘트 그라우팅 재료의 평가 결과는 향후 지반 내 적합한 그라우팅 재료 선정을 위하여 유용하게 활용될 수 있을 것으로 기대된다.

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • 제14권6호
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.