• Title/Summary/Keyword: Bentonite Cement

Search Result 67, Processing Time 0.027 seconds

Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout

  • Zhou, Yao;Wang, Gui H.;Chang, Yong H.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • This paper focuses on the engineering properties of Bentonite-Cement-Sodium silicate (BCS) grout, which was prepared by partially replacing the ordinary Portland cement in Cement-Sodium silicate grout with lithium bentonite (Li-bent) and sodium bentonite (Na-bent), respectively. The effect of different Water-to-Solid ratio (W/S) and various replacement percentages of bentonite on the apparent viscosity, bleeding, setting time, and early compressive strength of BCS grout were investigated. The XRD method was used to detect its hydration products. The results showed that both bentonites played a positive role in the stability of BCS grout, increased its apparent viscosity. Na-bent prolonged the setting time of BCS, while 5% of Li-bent shortened the setting time of BCS. The XRD analysis indicated that the hydration products between the mixture containing Na-bent and Li-bent did not differ much. Using bentonite as supplementary cementitious material (SCM) to replace partial cement is a promising way to cut down on carbon dioxide emissions and to produce low-cost, eco-friendly, non-toxic, and water-resistant grout. In addition, Li-bent was superior to Na-bent in improving the strength and the thickening of BCS grouts.

A Study on the Variation of Physical Properties by the Water to Cement Ratio and the Mixing Speed for Grout Materials (그라우트재의 물시멘트비 및 혼합속도에 의한 물성변화에 관한 연구)

  • 천병식;김진춘;장의웅;송성호;이준우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.445-452
    • /
    • 2001
  • Generally, OPC(ordinary portland cement) is used for grouting in Korea, and bentonite has usually been added to prevent the deposition of cement particles. The dispersion of CB(cement bentonite) grout is influenced by variable factors i.e. water to cement ratio, particle size of cement, kind of bentonite, adding volume, methods of adding, viscosity of CB grout materials and curdling time. Among variable factors, the viscosity of CB grout materials is influenced by the dispersion, and dispersion is improved as increasing the mixing speed. In this paper, described a suitable mixing speed of the High Speed Mixer in field, engineering characteristics of CB grout materials vary with the water to cement ratio and the mixing speed as well as confirming the state of dispersion.

  • PDF

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing

  • Lima-Guerra, D.J.;Mello, I.;Resende, R.;Silva, R.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.15-26
    • /
    • 2014
  • In order to study the capacities of a new occurrence of Brazilian clay samples as partial replacements of cement, a bentonite sample was selected for utilization in the natural and modified forms for present study. The natural bentonite (BBT) was modified by anchorament of 3-aminopropyltrietoxisilane ($BBT_{APS}$) and 3,2-aminoethylaminopropyltrimetoxisilane (BBTAEAPS) in the surface of component minerals of bentonite sample. The original and organo-bentonite samples were characterized by elemental analysis, scanning electron microscopic and textural analyses. The values of micropore area were varying from $7.2m^2g^{-1}$ for the BBT to $12.3m^2g^{-1}$ for the $BBT_{AEAPS}$. The bentonite samples were characterized by the main variable proportion of bentonite in the natural and intercalated forms (2, 5, 10, 15, 20, 25, 30, and 35 % by weight of cement) in the replacement mode whiles the amount of cementations material. The workability, density of fresh concrete, and absorption of water decreased as the substitution of ordinary Portland cement by perceptual of natural and modified bentonite increased. The results reveal that workability decreased with decrease of the amount of natural bentonite in the concrete, same behavior is observed for bentonite functionalized, varying from 49 to 28 mm. The energetic influence of the interaction of calcium nitrate in the structure of blends was determined through the calorimetric titration procedure.

A study on cement-based grout for ground heat exchangers (지중 열교환기용 시멘트 그라우트에 관한 연구)

  • Lee, Dong-Ju;Baek, Hwan-Jo;Kim, Gyoung-Man
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.27-36
    • /
    • 2011
  • In this paper, the applicability of cement grout has been studied as an alternative to bentonite grout for backfill ground heat exchangers. To provide an optimal mixture design, the thermal conductivity of cement grout and bentonite grout with various mixture ratios were experimentally evaluated and compared. Numerical analyses using Fluent(FVM program) were applied to compare the thermal transfer efficiency of the cement grout with that of the bentonite grout used in the construction. Also the effective ground thermal conductivity was measured by In-situ thermal response test. The results showed that the thermal efficiency of the cement grout was better than the bentonite grout. Consequently, the cement grout could be an alternative with more thermal efficiency to bentonite grout for ground heat exchangers.

  • PDF

The Estimation of Appropriate Mixing Amount of Cement-Bentonite Cutoff Walls for Repair and Reinforcement of Reservoir Embankments (저수지 제체의 보수·보강용 Cement-Bentonite 벽체의 적정혼합량 산정)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.27-32
    • /
    • 2021
  • Due to heavy rainfall and typhoons caused by climate change, it has become common to witness heavy rain that exceeds the design frequency of agricultural reservoirs. This has brought greater attention to the safety of irrigation facilities including agricultural reservoirs. Out of approximately 17,740 reservoirs available in Korea, 83.87% were built before 1970. To ensure the safety of these old reservoirs, their embankments are being repaired and reinforced using various techniques. Among these techniques, using the cement-bentonite cutoff wall makes it possible to construct diaphragm walls with slurry composed of cement and bentonite, while excavation. The advantages of this technique include that it is simple and fast, and ensures the uniformity of cutoff walls by enabling the immediate application of the replacement method to excavation areas; thus excellent performance is guaranteed. However, despite these advantages, the technique is not commonly used in Korea. Thus, this study investigated the changes in strength and permeability by varying the mix ratio of cement and bentonite. As a major experimental results, when the cement of 200 kg/m3 and the bentonite of 60 to 80 kg/m3 is most suitable for the repair and reinforcement of the reservoir embankments.

Study on physical characteristics of grouts for backfilling ground heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hang-Seok;Choi, Hyo-Pum;Woo, Sang-Baik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.533-544
    • /
    • 2008
  • To obtain the physical properties of grout materials, that is the thermal conductivity and viscosity, which are used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts show that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. To investigate the performance of cement grouts, fifteen samples were prepared by varying the water/cement ratio and the amount of sand and bentonite added into the cement mortar. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

The Strength Properties of Cement-Bentonite Soil Mixtures with Geosynthetics and Metakaolin (토목섬유 및 메타카올린 첨가 시멘트-벤토나이트 혼합토의 강도 특성)

  • Lee, Jae-Deuk;Yeon, Kyu-Seok;Kim, Kwang-Woo;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.159-167
    • /
    • 2012
  • In the present study, an investigation has been made on the application of cement-bentonite soil mixtures as the countermeasure against leachate produced by buried animal carcasses. For this purpose, the strength characteristics of the cement-bentonite soil mixtures mixed with geotextile and metakaolin. After the mixtures with different contents of the cement (0 %, 10 %), bentonite (0 %, 5 %, 10 %, 15 %, 20 %), and weathered soil (100 %, 95 %, 90 %, 85 %, 80 %) were prepared, metakaolin and geotextile were added with different contents (metakaolin : 0 %, 5 %, 10 %, 15 %, 20 % of the cement weight; geotextile : 0 %, 0.5 %, 1 %, 1.5 %, 2 %). Experimental results suggested that the early strength of the mixture increases due to the pore filling, the hydration acceleration, and the pozzolan reaction when metakaolin of 5~10 % of the cement weight was added. In addition, the compressive strength increase when 0.5~1 % geotextile contents were added, and the above these contents, the rate of strength increase was gradually decreased because of the fibrous tangles.

Analysis of Viscosity and Bleeding Characteristics of Grouting Materials according to the Proportion of Bentonite (벤토나이트 함량에 따른 지반 그라우팅 재료의 점성 및 블리딩 특성 분석)

  • Lee, Jong-Won;Weon, Jo-Hyun;Choi, Hyeon-Yong;Oh, Tae-Min
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.127-137
    • /
    • 2021
  • Grouting has been widely used to enhance the strength of the ground and prevent waterflow into the underground space in the geotechnical engineering field. Cement with bentonite can be considered a helpful grouting material because the bentonite has a swelling ability with water. Therefore, it is essential to evaluate the characteristics of grouting materials according to the mixing ratio for a successful grouting process. In this regard, the study investigated the viscosity and bleeding characteristics of grouting materials according to the mixing ratio (i.e., water/cement ratio and bentonite/cement ratio). In the experimental result, the viscosity increases with decreasing water/cement ratio and rising proportion of bentonite by weight of cement. However, the results of the bleeding ratio show the tendency is inversely proportional to the viscosity results. Bentonite was explored in terms of the viscosity and bleeding criterion. This result is expected to be meaningful to determine the optimized mixing ratio of bentonite-cement in the grouting field.

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.