• Title/Summary/Keyword: Benthic Organic Matter

Search Result 87, Processing Time 0.021 seconds

The Origin of Food Sources for Nuttallia olivacea and Nereidae by Fatty Acid Analysis (지방산을 이용한 Nuttallia olivacea 및 Nereidae의 먹이원에 관한 연구)

  • Shin, Woo-Seok;Kim, Boo-Gil
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1083-1092
    • /
    • 2010
  • The spatial variability in the food chain structure of an estuary environment (Nanakita estuary, Japan) was investigated using fatty acid. Potential organic matter sources (terrestiral plants, macroalgae, benthic microalgae, dinflagellates and bacteria), sedimentary organic matters and benthic invertebrates (Nuttallia olivacea and Nereidae) were sampled in four locations with different tidal flat type. The main objective of the present study was to determine the origin of sediment and the food sources of N. olivacea and Nereidae along with small-scale spatial variability. The origin of sedimentary organic matters were mainly the fatty acid of bacteria and benthic microalgae. Especially, The organic matter of terrestrial plant origin was found the highest in station C. The diets of N. olivacea and Nereidae were found to be dominated by diatoms and terrestrial plants. Whereas, macroalgae and dinoflagellates showed little influence to benthic invertebrates. Moreover, according to principal component analysis, it is showed that benthic invertebrates in the same region are using the same food without relation with species. On the other hand, the N. olivacea and Nereidae of station D clearly contrasts with station B in terms of main food sources. From these results, it is suggested that food competition of benthic invertebrates revealed high a connection between small-scale spatial variability and food source in estuary.

Use of Stable Carbon Isotope Ratios (${\delta}^{13}$C) for Identification of the Origin Organic Carbon in Benthic Food Webs in Youngil Bay, Korea

  • Lee, Won-Chan;Choi, Woo-Jeung;Lee, Pil-Yong;Kang, Chang-Keun
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.124-127
    • /
    • 2000
  • The analysis of stable carbon isotope ratios for benthic fauna was applied to identify the source of carbon in benthic food webs in Youngil Bay, Korea. The ${\delta}^{13}$C values of 9 invertebrate species collected in this area showed a narrow range between -20.5 and -16.3%$_o$ with a mean of-18.1 (${\pm}$1.1)"%$_o$. The results suggest that the major source of organic carbon for the benthic fauna of the lower estuarine reaches and the oceanic sites is autochthonous marine particulate organic matter. The contribution of organic matter from terrestrial and riverine sources to the diet of the benthic fauna in this area appears to be minor, despite the considerable inflow of riverine waters.

  • PDF

Effect of Adding Fermented Organic Matter on the Performance of Benthic Microbial Fuel Cell (BMFC) (저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과)

  • Lee, Mi-Hwa;Yang, Seol-Hwa;Kim, Young-Sook;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.486-491
    • /
    • 2022
  • A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B2, B6, B12, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.

The Effects of Adsorption on Phosphate Benthic Fluxes in the Intertidal Sediments of Keunso Bay, Yellow Sea (황해 근소만 조간대 퇴적물에서 인산염 흡착이 저층플럭스에 미치는 영향)

  • Kim, Dong-Seon;Kim, Kyung-Hee
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.247-255
    • /
    • 2009
  • We measured phosphate benthic fluxes and conducted phosphate adsorption experiments in order to find out the effects of adsorption on phosphate benthic fluxes in the intertidal sediments of Keunso Bay during summer and winter. Organic carbon contents showed little variation with season at St. S1, but noticeable changes were observed at St. S2, which were three times higher in winter than in summer. The higher organic carbon contents in winter resulted from the bloom of benthic algae in surface sediments. Pore water phosphate concentrations were much higher in summer than in winter. The higher phosphate concentration in summer was probably due to the faster remineralization rate of organic matter in summer. At St. S1, benthic fluxes of phosphate showed a negative value in summer and a positive value in winter. However, St. S2 had a negative benthic flux both in summer and winter. The negative benthic flux was ascribed to the phosphate adsorption on iron oxides in surface sediments. The equilibrium concentrations of phosphate obtained from the adsorption experiment were three times higher at St. S1 than at St. S2. The relatively high adsorption coefficient and low equilibrium concentration indicated that phosphate was strongly adsorbed on the surface sediments of Keunso Bay. The strong adsorption affinity significantly reduced benthic fluxes of phosphate in the intertidal sediments.

Sedimentary and Benthic Environment Characteristics in Macroalgal Habitats of the Intertidal Zone in Hampyeong Bay (함평만 조간대 해조류 분포지역의 퇴적 및 저서환경 특성)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.694-703
    • /
    • 2012
  • To understand the characteristics of sedimentary and benthic environments in habitats of naturally-occurring intertidal benthic macroalgae, various geochemical parameters of sediment (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) and pore water (temperature, salinity, pH, and nutrients) were measured in the southern intertidal zone of Hampyeong Bay at two month intervals from April to October 2009. Ecological characteristics including the distribution and biomass of benthic macroalgae were also investigated. Benthic macroalgae were distributed below 4 to 5 m depth from mean sea level near the lower portion of the intertidal zone where air exposure time is relatively short. The distribution area and biomass of benthic macroalgae gradually decreased during the study period. The surface sediments in the benthic algal region were mainly composed of finer sediments, such as slightly gravelly mud and mud. The temperature, salinity, pH, and nutrient concentrations (except dissolved inorganic nitrogen) in pore water did not differ in regions with and without benthic macroalgae, whereas the mean grain size and the concentrations of IL, COD, and AVS in sediments were much higher in regions harboring benthic macroalgae. The correlation between mean grain size and IL in sediments displayed two distinct gradients and the slope was much steeper in regions harboring benthic macroalgae, indicating that the content of organic matter in benthic algal region is not solely dependent on mean grain size. Our results indicate that the benthic macroalgae in the southern intertidal zone of Hampyeong Bay play an important role in the accumulation of organic matter in sediment.

Interaction between Water Quality and Substrate on Benthic Macroinvertebrates Index (BMI) (수질 및 하상기질이 저서동물지수(BMI)에 미치는 상호작용)

  • Hyoju Lee;Dongsoo Kong
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.261-268
    • /
    • 2023
  • The benthic macroinvertebrates index (BMI) was developed based on the 5-day biochemical oxygen demand (BOD5), which is the amount of biodegradable organic matter in stream water. However, benthic macroinvertebrates mainly live in the streambed substrate and are affected by the interaction of water quality and substrate. This study was conducted to examine the interactive relationship between water quality items (BOD5, total phosphorus (TP), total suspended solids (TSS)) and substrate with BMI by performing statistical analyses (four-way analysis of variance, Pearson's correlation analysis, partial correlation analysis and multiple regression analysis). The data used in the analyses were collected from 19,915 sampling units at 1,937 sites in South Korea from 2010 to 2020. The interaction effect between BOD5 and substrate types was confirmed through a four-way analysis of variance. Partial correlation analysis and multiple regression analysis estimated the degree of influence on the change in BMI value in the order of mean grain size of the substrate as (𝜱m) > BOD5 > TP > TSS. BMI can be regarded as an index that evaluates the comprehensive effects of water quality and streambed status, although it is an index that was developed based on the amount of biodegradable organic matter in a water column.

Characteristics of Macro Benthic Community in the Subtidal Zone of Muan Bay on Summer and Health Assessment by using AZTI Marine Biotic Index (AMBI) and Water Quality Index (WQI) (하계 무안만 조하대 저서동물군집 특성 및 AZTI의 해양생물지수(AMBI)와 수질평가지수(WQI)를 이용한 건강성 평가)

  • Oh, Jun Ho;Lee, Kyoung Seon
    • Journal of Marine Life Science
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • Benthic animals are important indicators in benthic environmental quality assessment. This study investigated the environmental characteristics and the distribution pattern of benthic animals, and assessed the benthic ecosystem using AMBI (AZTI's marine biotic index) and WQI (water quality index) in the subtidal zone of Muan bay. Samplings were collected from 10 stations in the subtidal zone of Muan bay on summer. In the upper area of Muan bay, grain size was finer and organic content was higher than those of in the lower area. The pollution indicator organism such as Musculista senhousia, Theora fragilis and Lumbrineris longifolia were dominant at some stations. The benthic community was distinguished into three groups of upper, center and lower area of Muan bay, and which were coincided with the results by correlation analysis between organic matter content and benthic health assessment (WQI and AMBI). As a result of this study, the health condition of the subtidal zone in Muan bay were good. However, from the results that benthic animals were not evenly distributed, and also the opportunistic species appeared, the load of organic matter in Muan bay seems to be increasing.

Surface Sediment Characteristics and Benthic Environments in the Mouth of Jinhae Bay, Korea (진해만 입구해역의 표층 퇴적물 특성과 저서환경)

  • HYUN Sangmin;CHOI Jin-Woo;CHOI Jin-Sung;LEE Taehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.700-707
    • /
    • 2003
  • Surface sediments in the mouth area of Jinhae Bay were investigated to evaluate the benthic environment in terms of geochemical criteria and macrobenthos abundance. Characteristics of the surface sediment distribution exhibited muddy sediments in the most part of study area. Some mixed sediments of coarse sand and mud were distributed along the coastal area of Geoje Island and around the Jeo Islands. Organic matter from ignition loss and total organic carbon from CHNS varied between $8.8-1.7\%,\;and\;4.62-0.77\%,$ respectively. The source of organic matter based on the C/S ratio was mixed with in situ biogenic and terrigenous organic matter. The C/S ratio of organic matter also suggested both an anoxic bottom condition in several parts of the study area. The content of hydrogen sulfide in surface sediment was extremely variable and showed spatio-temporal variation from site to site. In several locations, the content of hydrogen sulfide as an index of eutrophication was over the critical value (0.2 mg/g), suggesting that several parts of the study area were not favorable for the habitat of macrobenthos. The relationship among the number of individuals of marcrobenthos, hydrogen sulfide, and organic matter was not clear, but a potential negative relationship between individuals of marcrobenthos and hydrogen sulfide was indicated.

Radiocarbon for Studies of Organic Matter Cycling in the Ocean (방사성탄소를 이용한 해양 유기탄소 순환 연구 동향)

  • Hwang, Jeomshik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.189-201
    • /
    • 2012
  • Radiocarbon is a powerful tool for studies of carbon cycling in the ocean. Development of measurement technology of accelerator mass spectrometry has enabled researchers to measure radiocarbon even in specific compounds. In this paper, a brief introduction on radiocarbon measurement and reporting of radiocarbon data is provided. Researches that used radiocarbon measurements on bulk organic matter, organic compound classes, and specific organic compounds are reviewed. Examples include works to understand the cycling of particulate and dissolved organic matter, biochemical composition of particulate organic matter, post-depositional transport of sedimentary organic matter, selective incorporation of fresh organic matter by benthic organisms, chemoautotrophy by archaea, and sources of halogenated chemical compounds found in marine mammals.

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei;Oh Sung-Yong;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.194-202
    • /
    • 2003
  • Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.