Browse > Article
http://dx.doi.org/10.7850/jkso.2012.17.3.189

Radiocarbon for Studies of Organic Matter Cycling in the Ocean  

Hwang, Jeomshik (Ocean Science and Technology Institute, POSTECH)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.17, no.3, 2012 , pp. 189-201 More about this Journal
Abstract
Radiocarbon is a powerful tool for studies of carbon cycling in the ocean. Development of measurement technology of accelerator mass spectrometry has enabled researchers to measure radiocarbon even in specific compounds. In this paper, a brief introduction on radiocarbon measurement and reporting of radiocarbon data is provided. Researches that used radiocarbon measurements on bulk organic matter, organic compound classes, and specific organic compounds are reviewed. Examples include works to understand the cycling of particulate and dissolved organic matter, biochemical composition of particulate organic matter, post-depositional transport of sedimentary organic matter, selective incorporation of fresh organic matter by benthic organisms, chemoautotrophy by archaea, and sources of halogenated chemical compounds found in marine mammals.
Keywords
Radiocarbon; Organic matter; Carbon cycling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blair, N.E., E.L. Leithold, S.T. Ford, K.A. Peeler, J.C. Holmes, and D.W. Perkey, 2003. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim. Cosmochim. Acta, 67: 63-73.   DOI   ScienceOn
2 Brandes, J.A., C. Lee, S. Wakeham, M. Peterson, C. Jacobsen, S. Wirick, and G. Cody, 2004. Examining marine particulate organic matter at sub-micron scales using scanning transmission X-ray microscopy and carbon X-ray absorption near edge structure spectroscopy. Mar. Chem., 92: 107-121.   DOI   ScienceOn
3 Broecker, W.S. and E.A. Olson, 1959. Lamont radiocarbon measurements VI. Radiocarbon, 1: 111-132.
4 Conte, M.H., N. Ralph, and E.H. Ross, 2001. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep-Sea Res. II, 48: 1471-1505.   DOI   ScienceOn
5 Dickens, A.F., Y. Glinas, C.A. Masiello, S. Wakeham, and J.I. Hedges, 2004. Reburial of fossil organic carbon in marine sediments. Nature, 427: 336-339.   DOI   ScienceOn
6 Dittmar, T., B. Koch, N. Hertkorn, and G. Kattner, 2008. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods, 6: 230-235.   DOI
7 Drenzek, N.J., D.B. Montlucon, M.B. Yunker, R.W. Macdonald, and T.I. Eglinton, 2007. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular $^{13}C$ and $^{14}C$ measurements. Mar. Chem., 103: 146-162.   DOI   ScienceOn
8 Druffel, E.R.M. and P.M. Williams, 1990. Identification of a deep marine source of particulate organic carbon using bomb $^{14}C$. Nature, 347: 172-174.   DOI
9 Guo, L., P.H. Santschi, L.A. Cifuentes, S.E. Trumbore, and J. Southon, 1996. Cycling of high-molecular-weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic ($^{13}C$ and $^{14}C$) signatures. Limnol. Oceanogr., 41: 1242-1252.   DOI
10 Gustafsson, O., F. Haghseta, C. Chan, J.K. MacFarlane, and P.M. Gschwend, 1997. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. Environ. Sci. Technol., 31: 203-209.   DOI   ScienceOn
11 Gustafsson, O., M. Krusa, Z. Zencak, R.J. Sheesley, L. Granat, E. Engstrom, P.S. Praveen, P.S. Rao, C. Leck, and H. Rodhe, 2009. Brown clouds over south Asia: Biomass or fossil fuel combustion?, Science. 323: 495-498.   DOI   ScienceOn
12 Hansell, D.A. and C.A. Carlson, 1998. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature, 395: 263-266.   DOI   ScienceOn
13 Hansman, R., S. Griffin, J.T. Watson, E.R.M. Druffel, A.E. Ingalls, A. Pearson, and L.I. Aluwihare, 2009. The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc. Natl. Acad. Sci. U.S.A., 106: 6513-6518.   DOI   ScienceOn
14 Hedges, J.I. and J.H. Stern, 1984. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr., 29: 657-663.   DOI
15 Hedges, J.I., 1992. Global biogeochemical cycles: progress and problems. Mar. Chem., 39: 67-39.   DOI   ScienceOn
16 Hedges, J.I., J.A. Baldock, Y. Gelinas, C. Lee, M. Peterson, and S.G. Wakeham, 2001. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature, 409: 801-804.   DOI   ScienceOn
17 Hollister, C.D. and A.R.M. Nowell, 1991. Prologue: Abyssal storms as a global geologic process. Mar. Geol., 99: 275-280.   DOI   ScienceOn
18 Masiello, C.A. and E.R.M. Druffel, 1998. Black Carbon in Deep-Sea Sediments. Science, 280: 1911-1913.   DOI   ScienceOn
19 Liu, Z., J. Mao, M.L. Peterson, C. Lee, S.G. Wakeham, and P.G. Hatcher, 2009. Characterization of sinking particles from the northwest Mediterranean Sea using advanced solid-state NMR. Geochim. Cosmochim. Acta, 73: 1014-1026.   DOI   ScienceOn
20 Loh, A.N., J.E. Bauer, and E.R.M. Druffel, 2004. Variable ageing and storage of dissolved organic components in the open ocean. Nature, 430: 877-881.   DOI   ScienceOn
21 Masiello, C.A. and E.R.M. Druffel, 2001. Carbon isotope geochemistry of the Santa Clara River. Glob. Biogeochem. Cycles, 15: 407-416.   DOI   ScienceOn
22 McNichol, A.P. and L.I. Aluwihare, 2007. The power of radiocarbon in biogeochemical studies of the marine carbon cycle: Insights from studies of dissolved and particulate organic carbon (DOC and POC). Chem. Rev., 107: 443-466.   DOI   ScienceOn
23 McNichol, A.P., E.A. Osborne, A.R. Gagnon, B. Fry, and G.A. Jones, 1994. TIC, TOC, DIC, DOC, PIC, POC-unique aspects in the preparation of oceanographic samples for $^{14}C$-AMS. Nucl. Instr. and Meth. B, 92: 162-165.   DOI   ScienceOn
24 Mollenhauer, G., M. Kienast, F. Lamy, H. Meggers, R.R. Schneider, J.M. Hayes, and T.I. Eglinton, 2005. An evaluation of $^{14}C$ age relationships between co-occuring foraminifera, alkenones, and total organic carbon in continental margin sediments., Paleoceanography, 20: PA1016.
25 Nelson, D.E., R.G. Korteling, and W.R. Stott, 1977. $^{14}C$ detection at natural concentrations. Science, 198: 507-508.   DOI   ScienceOn
26 Ohkouchi, N., T.I. Eglinton, and J.M. Hayes, 2003. Radiocarbon dating of individual fatty acids as a tool for refining Antarctic margin sediment chronologies. Radiocarbon, 45: 17-24.   DOI
27 Schouten, S., E.C. Hopmans, E. Shefus, and J.S. Sinninghe Damste, 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett., 204: 265-274.   DOI   ScienceOn
28 Roland, L.A., M.D. McCarthy, and T. Guilderson, 2008. Sources of molecularly uncharacterized organic carbon in sinking particles from three ocean basins: A coupled $\Delta^{14}C\;and\;\delta^{13}C$ approach. Mar. Chem., 111: 199-213.   DOI   ScienceOn
29 Sachs, J.P. and S.J. Lehman, 1999. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science, 286: 756-759.   DOI   ScienceOn
30 Santos, G.M., J.R. Southon, S. Griffin, S.R. Beaupre, and E.R.M. Druffel, 2007. Ultra small-mass AMS $^{14}C$ sample preparation and analyses at KCCAMS/UCI Facility. Nucl. Instr. Meth. B, 259: 293-302.   DOI   ScienceOn
31 Stuiver, M., 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon, 25: 793-795.   DOI
32 Stuiver, M. and H.A. Polach, 1977. Reporting of $^{14}C$ data. Radiocarbon, 19: 355-363.   DOI
33 Teuten, E.L., L. Xu, and C.M. Reddy, 2005. Two abundant bioaccumulated halogenated compounds are natural products. Science, 307: 917-920.   DOI   ScienceOn
34 Verardo, D.J., P.N. Froelich, and A. McIntyre, 1989. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res., 37: 157-165.
35 Vogel, J.S., D.E. Nelson, and J.R. Southon, 1987. $^{14}C$ Background Levels in an accelerator mass spectrometry system. Radiocarbon, 29: 323-333.   DOI
36 Bennett, C.L., R.P. Beukens, M.R. Clover, H.E. Gove, R.B. Liebert, A.E. Litherland, K.H. Purser, and W.H. Sondheim, 1977. Radiocarbon dating using electrostatic accelerators-negative ions provide the key, Science. 198: 508-510.   DOI   ScienceOn
37 Aluwihare, L.I., D.J. Repeta, and R.F. Chen, 2002. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight. Deep-Sea Res. II, 49: 4421-4437.   DOI   ScienceOn
38 Arnold, J.R. and W.F. Libby, 1949. Age determinations by radiocarbon content: Checks with samples of known age. Science, 110: 678-680.   DOI
39 Benner, R., B. Benitez-Nelson, K. Kaiser, and R.M.W. Amon, 2004. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett., 31: L05305, doi:05310.01029/02003GL019251.   DOI   ScienceOn
40 Berelson, W.M., 2002. Particle settling rates increase with depth in the ocean. Deep-Sea Res. II, 49: 237-251.
41 Eglinton, T.I., G. Eglinton, L. Dupont, E.R. Sholkovitz, D. Montlucon, and C.M. Reddy, 2002. Composition, age, and provenance of organic matter in NW African dust over the Atlantic Ocean. Geochem., Geophys., Geosyst., 3: 10.1029/2001GC000269.   DOI
42 Druffel, E.R.M., P.M. Williams, J.E. Bauer, and J.R. Ertel, 1992. Cycling of Dissolved and Particulate Organic Matter in the Open Ocean. J. Geophys. Res., 97: 15639-15659.   DOI
43 Eglinton, T.I., L.I. Aluwihare, J.E. Bauer, E.R. M. Druffel, A.P. McNichol, 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem., 68: 904-912.   DOI   ScienceOn
44 Eglinton, T.I., B.C. Benitez-Nelson, A. Pearson, A.P. McNichol, J.E. Bauer, and E.R.M. Druffel, 1997. Variability in Radiocarbon Ages of Individual Organic Compounds from Marine Sediments. Science, 277: 796-799.   DOI   ScienceOn
45 Flores-Cervantes, D.X., D.L. Plata, J.K. MacFarlane, C.M. Reddy, and P.M. Gschwend, 2009. Black carbon in marine particulate organic carbon: Inputs and cycling of highly recalcitrant organic carbon in the Gulf of Maine. Mar. Chem., 113: 172-181.   DOI   ScienceOn
46 Godwin, H., 1962. Radiocarbon dating. Nature, 195: 943-945.   DOI
47 Goni, M.A., M.B. Yunker, R.W. Macdonald, and T.I. Eglinton, 2005. The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar. Chem., 93: 53-73.   DOI   ScienceOn
48 Guo, L. and P.H. Santschi, 1996. A critical evaluation of the crossflow ultrafiltration technique for sampling colloidal organic carbon in seawater. Mar. Chem., 55: 113-127.   DOI   ScienceOn
49 Honjo, S., 1982. Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin. Science, 218: 883-884.   DOI   ScienceOn
50 Honda, M.C., M. Kusakabe, S. Nakabayashi, and M. Katagiri, 2000. Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of $^{14}C$-poor sediment from the continental shelf. Mar. Chem., 68: 231-247.   DOI   ScienceOn
51 Hwang, J. and E.R.M. Druffel, 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean?. Science, 299: 881-884.   DOI   ScienceOn
52 Hwang, J. and E.R.M. Druffel, 2005. Blank correction for Δ14C measurements in organic compound classes of oceanic particulate matter. Radiocarbon, 47: 75-87.   DOI
53 Hwang, J., E.R.M. Druffel, and J.E. Bauer, 2006a. Incorporation of aged dissolved organic carbon (DOC) by oceanic particulate organic carbon (POC): An experimental approach using natural carbon isotopes. Mar. Chem., 98: 315-322.   DOI   ScienceOn
54 Hwang, J., E.R.M. Druffel, T.I. Eglinton, and D.J. Repeta, 2006b. Source(s) and cycling of the nonhydrolyzable organic fraction of oceanic particles. Geochim. Cosmochim. Acta, 70: 5162-5168.   DOI   ScienceOn
55 Hwang, J., E.R.M. Druffel, and T.I. Eglinton, 2010. Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles. Global Biogeochem. Cycles, 24: GB4016, doi:4010.1029/2010GB003802.   DOI
56 Ingalls, A.E. and A. Pearson, 2005. Ten years of compound-specific radiocarbon analysis. Oceanography, 18: 18-31.   DOI
57 Pearson, A. and T.I. Eglinton, 2000. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compoundspecific $\Delta^{14}C\;and\;\delta^{13}C$ data. Org. Geochem., 31: 1103-1116.   DOI   ScienceOn
58 Ohkouchi, N., T.I. Eglinton, L.D. Keigwin, and J.M. Hayes, 2002. Spatial and temporal offsets between proxy records in a sediment drift. Science, 298: 1224-1227.   DOI   ScienceOn
59 Ohkouchi, N., L. Xu, C.M. Reddy, D. Montlucon, T.I. Eglinton, 2005. Radiocarbon dating of alkenones from marine sediments: I. Isolation protocal. Radiocarbon, 47: 401-412.   DOI
60 Passow, U., R.F. Shipe, A. Murray, D.K. Pak, M.A. Brzezinski, and A.L. Alldredge, 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont. Shelf Res., 21: 327-346.   DOI   ScienceOn
61 Pearson A, T.I. Eglinton, A.P. McNichol, 2000. An organic tracer for surface ocean radiocarbon. Paleoceanography, 15: 541-550.   DOI   ScienceOn
62 Pearson, A., J.S. Seewald, and T.I. Eglinton, 2005. Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim. Cosmochim. Acta, 69: 5477-5486.   DOI   ScienceOn
63 Pearson, A., A.P. McNichol, R.J. Schneider, K.F.V. Reden, and Y. Zheng, 1998. Microscale AMS $^{14}C$ measurement at NOSAMS. Radiocarbon, 40: 61-75.
64 Pearson, A., A.P. McNichol, B.C. Benitez-Nelson, J.M. Hayes, and T.I. Eglinton, 2001. Origin of lipid biomarkers in Santa Monica Basin surface sediment: A case study using compound-specific $\Delta^{14}C$ analysis. Geochim. Cosmochim. Acta, 65: 3123-3137.   DOI   ScienceOn
65 Peulv, S., J.W. de Leeuw, M.-A. Sicre, M. Baas, and A. Saliot, 1996. Characterization of macromolecular organic matter in sediment traps from the northwestern Mediterranean Sea. Geochim. Cosmochim. Acta, 60: 1239-1259.   DOI   ScienceOn
66 Wang, X.-C., E.R.M. Druffel, S. Griffin, C. Lee, and M. Kashgarian, 1998. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean. Geochim. Cosmochim. Acta, 62: 1365-1378.   DOI   ScienceOn
67 Wakeham, S.G. and E.A. Canuel, 1988. Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: Implications for particle dynamics. J. Mar. Res., 46: 183-213.   DOI
68 Wakeham, S.G., C. Lee, J.I. Hedges, P.J. Hernes, and M.L. Peterson, 1997. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta, 61: 5363-5369.   DOI   ScienceOn
69 Wang, X.-C., E. Druffel, and C. Lee, 1996. Radiocarbon in organic compound classes in particular organic matter and sediment in the deep northeast Pacific Ocean. Geophys. Res. Lett., 23: 3583-3586.   DOI   ScienceOn
70 Williams, P.M. and E.R.M. Druffel, 1987. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature, 330: 246-248.   DOI
71 Kang, D.-J. M.-K. Park and K.-R. Kim, 2001. Application of AMS Radiocarbon in Earth system Science Studies. J. of Korean Physical Society, 39: 755-761.
72 Ingalls, A.E., S.R. Shah, R.L. Hansman, L.I. Aluwihare, G.M. Santos, E.R.M. Druffel, and A. Pearson, 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. U.S.A., 103: 6442-6447.   DOI   ScienceOn
73 Ishikawa, N., M. Uchida, Y. Shibata, and I. Tayasu, 2010. A new application of radiocarbon ($^{14}C$) concentrations to stream food web analysis. Nucl. Instr. Meth. B, 268: 1175-1178.   DOI   ScienceOn
74 Jull, A.J.T. and G.S. Burr, 2006. Accelerator mass spectrometry: Is the future bigger or smaller?. Earth Planet. Sci. Lett., 243: 305-325.   DOI   ScienceOn
75 Kao, S.-J. and K.-K. Liu, 1996. Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan. Limnol. Oceanogr., 41: 1749-1757.   DOI
76 Karner, M.B., E.F. DeLong, and D.M. Karl, 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409: 507-510.   DOI   ScienceOn
77 Komada, T., E.R.M. Druffel, and S.E. Trumbore, 2004. Oceanic export of relict carbon by small mountainous rivers. Geophys. Res. Lett., 31: L07054, doi:07010.01029/02004GL019512.
78 Komada, T., M.R. Anderson, and C.L. Dorfmeier, 2008. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, $\delta^{13}C\;\Delta^{14}C:$ comparison of fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr. Methods, 6: 254-262.   DOI
79 Lee, C., S. Wakeham, and C. Arnosti, 2004. Particulate organic matter in the sea: the composition conundrum. Ambio, 33: 565-575.   DOI
80 Prahl, F.G. and S.G. Wakeham, 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature, 330: 367-369.   DOI
81 Purinton, B.L., D.J. DeMaster, C.J. Thomas, and C.R. Smith, 2008. $^{14}C$ as a tracer of labile organic matter in Antarctic benthic food webs. Deep-Sea Res. II, 55: 2438-2450.   DOI   ScienceOn
82 Ramsey, C.B. and R.E.M. Hedges, 1994. Carbon dioxide sputter source development at Oxford, Nucl. Instr. Meth. B, 92: 100-104.   DOI   ScienceOn
83 Rau, G.H., D.M. Karl, and R.S. Carney, 1986. Does inorganic carbon assimilation cause $^{14}C$ depletion in deep-sea organisms?. Deep-Sea Res., 33: 349-357.   DOI   ScienceOn
84 Reddy, C.M., A. Pearson, L. Xu, A.P. McNichol, B.A. Benner Jr., S.A. Wise, G.A. Klouda, L.A. Currie, and T.I. Eglinton, 2002. Radiocarbon as a tool to apportion the sources of polycycling aromatic hydrocarbons and black carbon in environmental samples. Environ. Sci. Technol., 36: 1774-1782.   DOI   ScienceOn
85 Reimer, P.J., et al., 2009. Intcal09 and marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 51: 1111-1150.
86 Repeta, D.J. and L.I. Aluwihare, 2006. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: Implications for organic carbon cycling. Limnol. Oceanogr., 51: 1045-1053.   DOI
87 Roberts, M.L., K.F. von Reden, J.R. Burton, C.P. McIntyre, and S.R. Beaupre, in press. A gas-accepting ion source for accelerator mass spectrometry: Progress and applications. Nucl. Instr. Meth. B.
88 Roberts, M.L., R.J. Schneider, K.F. von Reden, J.S.C. Wills, B.X. Han, J.M. Hayes, B.E. Rosenheim, and W.J. Jenkin, 2007. Progress on a gas-accepting ion source for continous-flow accelerator mass spectrometry. Nucl. Instr. Meth. B, 259: 83-87.   DOI   ScienceOn