• Title/Summary/Keyword: Bent pile structures

Search Result 14, Processing Time 0.024 seconds

Analysis of Optimized Column-pile Length Ratio for Supplementing Virtual Fixed Point Design of Bent Pile Structures (단일 현장타설말뚝의 가상고정점 설계를 보완한 상부기둥-하부말뚝 최적 길이비 분석)

  • Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1915-1933
    • /
    • 2013
  • In this study, the virtual fixed point analysis and 3D fully modeling analysis for bent pile structures are conducted by considering various influencing factors and the applicability of the virtual fixed point theory is discussed. Also, the optimized column-pile length ratio is analyzed for supplementing virtual fixed point design and examining a more exact behavior of bent pile structures by taking into account the major influencing parameters such as pile length, column and pile diameter, reinforcement ratio and soil conditions. To obtain the detailed information, the settlement and lateral deflection of the virtual fixed point theory are smaller than those of 3D fully modeling analysis. On the other hand, the virtual fixed point analysis overestimates the axial force and bending moment compared with 3D fully modeling analysis. It is shown that the virtual fixed point analysis cannot adequately predict the real behavior of bent pile structures. Therefore, it is necessary that 3D fully modeling analysis is considered for the exact design of bent pile structures. In this study, the emphasis is on quantifying an improved design method (optimized column-pile length ratio) of bent pile structures developed by considering the relation between the column-pile length ratio and allowable lateral deflection criteria. It can be effectively used to perform a more economical and improved design of bent pile structures.

Simplified Analysis of Pile Bent Structures and Minimum Reinforcement Ratio (단일 현장타설말뚝의 간편해석 및 최소 철근비 분석)

  • Kim, Jae-Young;Hwang, Taik-Jean;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.33-43
    • /
    • 2011
  • In this study, simplified analysis (discrete analysis of column and pile) of pile bent structures was performed on the basis of the equivalent base spring model. And the minimum reinforcement ratio in pile bent structures was evaluated by taking into account various factors. To obtain the detailed information, simplified analysis was performed for column-pile interactions and the behavior of a column-pile was estimated and highlighted. Based on this study, it is shown that previous design method based on virtual fixed point theory cannot adequately predict the physical behavior of pile bent structures. It is found that the maximum bending moment is located within craking moment of the pile when material non-linearity is considered. It is also found that the minimum reinforcement ratio (=0.4%) is appropriately applicable for the optimal design of pile bent structure under ultimate lateral loading.

Proposed Optimized Column-pile Diameter Ratio with Varying Cross-section for Bent Pile Structures (단일 현장타설말뚝의 변단면 분석을 통한 최적 기둥-말뚝 직경비 제안)

  • Kim, Jaeyoung;Jeong, Sangseom;Ahn, Sangyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1935-1946
    • /
    • 2013
  • In this study, the behavior characteristics of bent pile structures with varying cross-section was examined through the measured results of field load test. A framework for determining the bending stress is calculated based on the stresses in the circumference of the pile using 3D finite element analysis. It is found that the bending stress near the pile-column joint changes rapidly and fracture zones occurs easily at variable cross-sections in bent pile structures. Also, the optimized column-pile diameter ratio was analyzed through the relationship between the column-pile diameter ratio and lateral crack load ratio. Based on this study, the optimized column-pile diameter ratio can be obtained near the inflection point of the curve between the column-pile diameter ratio and lateral crack load ratio. Therefore, a present study by considering the optimized variable cross-section condition would be improved bent pile structures design.

Application of Virtual Fixed Point Theory and Discrete Analysis for Pile Bent Structures (단일 현장타설말뚝의 가상고정점 설계 및 분리해석 적용성 평가)

  • Kim, Jae-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.57-74
    • /
    • 2013
  • In this study, the virtual fixed point analysis and 3D full-modeling analysis for pile bent structures are conducted by considering various influencing factors and the applicability of the virtual fixed point theory is discussed. Also, a discrete analysis calculating separately both the superstructure and substructure of pile bent structures is performed on the basis of an equivalent base spring model by taking into account the major influencing parameters such as soil conditions, combined loading and pile diameter. The results show that the settlement and lateral deflection of the virtual fixed point theory are smaller than those of 3D full-modeling analysis. On the other hand, the virtual fixed point analysis overestimates the axial force and bending moment compared with 3D full-modeling analysis. It is shown that the virtual fixed point analysis cannot adequately predict the real behavior of pile bent structures. It is also found that discrete analysis gives similar results of lateral deflection and bending moment to those of unified analysis. Based on this study, it is found that discrete analysis considering column-pile interaction conditions is capable of predicting reasonably well the behavior of pile bent structures. It can be effectively used to perform a more economical design of pile bent structures.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

A Study on the Application of Minimum Reinforcement Ratio in Pile-Bent structure (단일형 현장타설말뚝의 최소 철근비 적용을 위한 연구)

  • Kim, Jae-Young;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.122-130
    • /
    • 2010
  • In recent days, the foundations of huge structures in general and mega foundations of grand bridges in particular are required in geotechnical engineering. However, previous design method based on virtual fixed point theory cannot adequately predict Pile-Bent structure‘s physical behavior. Therefore, this paper describes a new analysis and design of Pile-Bent structure for grand bridges. A detailed analysis was performed for column-pile interactions using FB-Pier program and Midas program. As a result, the behavior of a column-pile is estimated and highlighted. Moreover, based on this study, it is found that the minimum reinforcement ratio(=0.4%) is applicable for plastic behavior of columns.

  • PDF

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

Analysis of Laterally Loaded Pile-Bent Structure with Varying Cross-sectional Area (변단면 파일벤트 구조의 수평거동 분석)

  • Jeong, Sang-Seom;Sung, Chul-Gyu;Ko, Jun-Young;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.69-75
    • /
    • 2009
  • The load distribution and deformation of pile-bent structures are investigated using a numerical study. A numerical analysis that takes into account the effects of varying cross-sectional area was performed for different pier diameters, loading steps, and soil conditions. Through the comparison study, it is shown that the location of maximum bending moment is almost the same per each loading step, regardless of varying cross-sections. However, the member force (i.e., stress of pile material) has the largest value at the ground surface when the cross-section is changed. Based on the results obtained, it is found that the location of maximum member force influences highly the behavior of pile-bent structure with varying cross-sections for repair works.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.