• 제목/요약/키워드: Benjamin equation

검색결과 10건 처리시간 0.021초

WELL-POSEDNESS FOR THE BENJAMIN EQUATIONS

  • Kozono, Hideo;Ogawa, Takayoshi;Tanisaka, Hirooki
    • 대한수학회지
    • /
    • 제38권6호
    • /
    • pp.1205-1234
    • /
    • 2001
  • We consider the time local well-posedness of the Benjamin equation. Like the result due to Keing-Ponce-Vega [10], [12], we show that the initial value problem is time locally well posed in the Sobolev space H$^{s}$ (R) for s>-3/4.

  • PDF

OPTIMAL CONTROL OF THE VISCOUS WEAKLY DISPERSIVE BENJAMIN-BONA-MAHONY EQUATION

  • ZHANG, LEI;LIU, BIN
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1185-1199
    • /
    • 2015
  • This paper is concerned with the optimal control problem for the viscous weakly dispersive Benjamin-Bona-Mahony (BBM) equation. We prove the existence and uniqueness of weak solution to the equation. The optimal control problem for the viscous weakly dispersive BBM equation is introduced, and then the existence of optimal control to the problem is proved.

QUADRATIC B-SPLINE FINITE ELEMENT METHOD FOR THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Yin, Yong-Xue;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • 제29권5호
    • /
    • pp.503-510
    • /
    • 2013
  • A quadratic B-spline finite element method for the spatial variable combined with a Newton method for the time variable is proposed to approximate a solution of Benjamin-Bona-Mahony-Burgers (BBMB) equation. Two examples were considered to show the efficiency of the proposed scheme. The numerical solutions obtained for various viscosity were compared with the exact solutions. The numerical results show that the scheme is efficient and feasible.

REDUCED-ORDER BASED DISTRIBUTED FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Jia, Li-Jiao;Nam, Yun;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.661-681
    • /
    • 2018
  • In this paper, we discuss a reduced-order modeling for the Benjamin-Bona-Mahony-Burgers (BBMB) equation and its application to a distributed feedback control problem through the centroidal Voronoi tessellation (CVT). Spatial distcritization to the BBMB equation is based on the finite element method (FEM) using B-spline functions. To determine the basis elements for the approximating subspaces, we elucidate the CVT approaches to reduced-order bases with snapshots. For the purpose of comparison, a brief review of the proper orthogonal decomposition (POD) is provided and some numerical experiments implemented including full-order approximation, CVT based model, and POD based model. In the end, we apply CVT reduced-order modeling technique to a feedback control problem for the BBMB equation.

INTERNAL FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Piao, Guang-Ri;Lee, Hyung-Chen
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권3호
    • /
    • pp.269-277
    • /
    • 2014
  • A numerical scheme is proposed to control the BBMB (Benjamin-Bona-Mahony-Burgers) equation, and the scheme consists of three steps. Firstly, BBMB equation is converted to a finite set of nonlinear ordinary differential equations by the quadratic B-spline finite element method in spatial. Secondly, the controller is designed based on the linear quadratic regulator (LQR) theory; Finally, the system of the closed loop compensator obtained on the basis of the previous two steps is solved by the backward Euler method. The controlled numerical solutions are obtained for various values of parameters and different initial conditions. Numerical simulations show that the scheme is efficient and feasible.

Model-independent reconstruction of the equation of state of dark energy

  • Hwang, Seung-gyu;L'Huillier, Benjamin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.69.1-69.1
    • /
    • 2020
  • While Dark Energy is one of the explanations for the accelerating expansion of the Universe, its nature remains a mystery. The standard (flat) ΛCDM model is consistent with cosmological observations: type Ia Supernova, BAO, CMB, and so on. However, the analysis of observations assuming a model, model-dependent approach, is likely to bias the results towards the assumed model. In this poster, I will introduce model-independent approach with Gaussian process and the application of Gaussian process regression to reconstruct the equation of state of dark energy.

  • PDF

Testing the Curvature of the Universe

  • L'Huillier, Benjamin
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.58.4-58.4
    • /
    • 2019
  • In a homogeneous and isotropic universe, the solution to the Einstein Field equation is the Friedmann-Robertson-Lemaître-Walker metric, which describes an expanding Universe with spatial curvature. The curvature has profound implications, in particular regarding the early universe. In this talk, I will review the state-of-the-arts constraints on the spatial curvature of the Universe using different cosmological observations. In particular, I will focus on model-independent tests using baryon acoustic oscillations and supernovae.

  • PDF

Model-independent constraints on the light-curve parameters and reconstructions of the expansion history from Type Ia supernovae

  • 구한울
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.54.1-54.1
    • /
    • 2019
  • We use iterative smoothing reconstruction method along with exploring in the parameter space of the light curves of the JLA supernova compilation (Joint Light-curve Analysis) to simultaneously reconstruct the expansion history of the universe as well as putting constrains on the light curve parameters without assuming any cosmological model. Our constraints on the light curve parameters of the JLA from our model-independent analysis seems to be closely in agreement with results assuming ΛCDM cosmology or using Chevallier-Polarski-Linder (CPL) parametrization for the equation of state of dark energy. This implies that there is no hidden significant feature in the data that could be neglected by cosmology model assumption. The reconstructed expansion history of the universe and properties of dark energy seems to be in good agreement with expectations of the standard ΛCDM model. Our results also indicate that the data allows a considerable flexibility for expansion history of the universe.

  • PDF

A Comparative Analysis of Artificial Neural Network (ANN) Architectures for Box Compression Strength Estimation

  • By Juan Gu;Benjamin Frank;Euihark Lee
    • 한국포장학회지
    • /
    • 제29권3호
    • /
    • pp.163-174
    • /
    • 2023
  • Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.

Model-independent Constraints on Type Ia Supernova Light-curve Hyperparameters and Reconstructions of the Expansion History of the Universe

  • Koo, Hanwool;Shafieloo, Arman;Keeley, Ryan E.;L'Huillier, Benjamin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.48.4-49
    • /
    • 2020
  • We reconstruct the expansion history of the universe using type Ia supernovae (SN Ia) in a manner independent of any cosmological model assumptions. To do so, we implement a nonparametric iterative smoothing method on the Joint Light-curve Analysis (JLA) data while exploring the SN Ia light-curve hyperparameter space by Markov Chain Monte Carlo (MCMC) sampling. We test to see how the posteriors of these hyperparameters depend on cosmology, whether using different dark energy models or reconstructions shift these posteriors. Our constraints on the SN Ia light-curve hyperparameters from our model-independent analysis are very consistent with the constraints from using different parameterizations of the equation of state of dark energy, namely the flat ΛCDM cosmology, the Chevallier-Polarski-Linder model, and the Phenomenologically Emergent Dark Energy (PEDE) model. This implies that the distance moduli constructed from the JLA data are mostly independent of the cosmological models. We also studied that the possibility the light-curve parameters evolve with redshift and our results show consistency with no evolution. The reconstructed expansion history of the universe and dark energy properties also seem to be in good agreement with the expectations of the standard ΛCDM model. However, our results also indicate that the data still allow for considerable flexibility in the expansion history of the universe. This work is published in ApJ.

  • PDF