• Title/Summary/Keyword: Bending tests

Search Result 1,067, Processing Time 0.021 seconds

A Experimental Study on Concrete Filled Tubes(CFT) in Flexure (충전강관 부재의 휨거동에 대한 실험적 연구)

  • 정철헌;김인규;진병무;박세진;이윤석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.139-144
    • /
    • 2003
  • To apply CFT members into the bridge girders, bending behavior of CFT is to be investigated. However, pure bending tests of CFT have been rarely performed, while much of the experimental study of CFT focuses on the axial loading. In this study, ultimate bending strength of CFTs with various different thicknesses and diameters was measured and compared with behaviors of bare tubes. It shows the beneficial effect of concrete for CFT in flexure to increase strength and ductility.

  • PDF

Analysis of the Structural Behaviors of Tunnel Linings in Joomunjin Standard Sand by Centrifugal Model Tests (원심모형실험에 의한 사질토 지반내 터널 복공의 역학적 거동에 관한 연구)

  • 김택곤;김영근;박중배;이희근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.161-168
    • /
    • 1999
  • A series of centrifuge model tests were performed in order to investigate the behaviors of various tunnel linings. A 1/100-scaled aluminum and hydrostone horseshoe tunnel linings with a radius km, height km were buried in a depth of C/D=3 with dry Joomunjin standard sand, the relative density of which was 86%. Bending moments and thrusts along the tunnel circumference were measured by 12 strain gages. Earth pressures in soil and on lining were estimated by pressure transducers, ground surface settlements at center and edges by using LVDTs. Average Ko(coefficient of earth pressure at rest) was 0.39 for the model sand. The structural behaviors of lining depended on its damaged conditions. But, as a rule, on the crown, the tensile circumferential strain of lining occurred at the inner surface, and the compressive at the outer surface, then positive bending moment was created at the crown. The circumferential strain of the inner surface on the springline was tensile, and the outer compressive, so negative bending moment was measured at the springline. For hydrostone linings, cracks initiated at the inner surface on the crown, and the outer on the springline over average 40g.

  • PDF

Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load (감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Seon-Jin;Kim, Jin-Hwan;Kim, Hyun-Soo;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

Experimental investigation of multi-layered laminated glass beams under in-plane bending

  • Huang, Xiaokun;Liu, Qiang;Liu, Gang;Zhou, Zhen;Li, Gang
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.781-794
    • /
    • 2016
  • Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

Prediction of Hybrid fibre-added concrete strength using artificial neural networks

  • Demir, Ali
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.503-514
    • /
    • 2015
  • Fibre-added concretes are frequently used in large site applications such as slab and airports as well as in bearing system elements or prefabricated elements. It is very difficult to determine the mechanical properties of the fibre-added concretes by experimental methods in situ. The purpose of this study is to develop an artificial neural network (ANN) model in order to predict the compressive and bending strengths of hybrid fibre-added and non-added concretes. The strengths have been predicted by means of the data that has been obtained from destructive (DT) and non-destructive tests (NDT) on the samples. NDTs are ultrasonic pulse velocity (UPV) and Rebound Hammer Tests (RH). 105 pieces of cylinder samples with a dimension of $150{\times}300mm$, 105 pieces of bending samples with a dimension of $100{\times}100{\times}400mm$ have been manufactured. The first set has been manufactured without fibre addition, the second set with the addition of %0.5 polypropylene and %0.5 steel fibre in terms of volume, and the third set with the addition of %0.5 polypropylene, %1 steel fibre. The water/cement (w/c) ratio of samples parametrically varies between 0.3-0.9. The experimentally measured compressive and bending strengths have been compared with predicted results by use of ANN method.

Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model

  • Mezquida-Alcaraz, Eduardo J.;Navarro-Gregori, Juan;Lopez, Juan Angel;Serna-Ros, Pedro
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • Nowadays, the characterization of Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) tensile behavior still remains a challenge for researchers. For this purpose, a simplified closed-form non-linear hinge model based on the Third Point Bending Test (ThirdPBT) was developed by the authors. This model has been used as the basis of a simplified inverse analysis methodology to derive the tensile material properties from load-deflection response obtained from ThirdPBT experimental tests. In this paper, a non-linear finite element model (FEM) is presented with the objective of validate the closed-form non-linear hinge model. The state determination of the closed-form model is straightforward, which facilitates further inverse analysis methodologies to derive the tensile properties of UHPFRC. The accuracy of the closed-form non-linear hinge model is validated by a robust non-linear FEM analysis and a set of 15 Third-Point Bending tests with variable depths and a constant slenderness ratio of 4.5. The numerical validation shows excellent results in terms of load-deflection response, bending curvatures and average longitudinal strains when resorting to the discrete crack approach.

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Bending behavior of shape memory alloy bar and its application of seismic restrainers for bridges (형상기억합금의 휨거동 및 교량변위제어장치적용 연구)

  • Choi, Eun-Soo;Park, Joo-Nam;Kim, Hak-Soo;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.23-32
    • /
    • 2007
  • The goal of this study is to perform several bending tests on a shape memory alloy bar and to analyze the characteristics of the bending behavior. The other goal is to verify the seismic performance of an SMA bar bending application. Single and double bending tests were conducted with varying loading speeds and maximum displacement. The loading and the unloading stiffness were estimated from the force-displacement curves and the equivalent damping ratio of each test was also assessed. In single bending, the SMA bar showed the stiffness hardening after the displacement of 32 mm. It is assumed that this phenomenon is due to the stress-induced-martensite hardening. The increasing loading speed did not influence on the stiffness of the single bending SMA bar. The stiffness of the double bending bar is about 5 times of that of the single bending. This study introduced a seismic application of SMA bending bars as seismic restrainers for bridges and showed its practicality. SMA bars in bending are used for seismic restrainers in a three-span-simply-supported bridge. They showed the effectiveness to reduce the responses of the bridge and the applicability for a seismic restrainer. The significance of this study is to provide basic knowledge of SMA bending and its seismic applications.

Experimental capacity of perforated cold-formed steel open sections under compression and bending

  • Orlando, Maurizio;Lavacchini, Giovanni;Ortolani, Barbara;Spinelli, Paolo
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This study evaluates the reliability of present European codes in predicting the collapse load of columns made with perforated cold-formed steel (CFS) profiles under combined axial load and bending. To this aim, a series of experimental tests on slender open-section specimens have been performed at varying load eccentricity. Preliminarily, stub column tests have also been performed to calculate the effective section properties of the investigated profile. By comparison of experimental data with code-specified M-N strength domains, the authors demonstrate that present code formulations may underestimate the collapse load of thin-walled perforated open sections. The study is the first step of a wider experimental and numerical study aimed at better describing strength domains of perforated CFS open sections.

In-mold Assembly of Polymer and Surface-machined Sheet Metal by Insert Injection Molding (금속 박판의 표면가공과 인서트 사출을 통한 형내 접합기술)

  • Kim, S.W.;Kim, S.K.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • In this study, we have investigated bonding of metal and plastic parts with single planar interface. This is facilitated by surface processing of aluminum sheet, which consists of slitting and punching, followed by insert-molding of polybuthylelne terephthalate(PBT). An injection mold has been built to fabricate specimen. After processing of the specimen, tensile and bending shear adhesion tests have been fulfilled according to KS M3734 and KS M3723, respectively. We also have conducted simulation of tensile and bending shear adhesion tests. Based on the tests results, the proposed bonding method outperforms existing methods based on adhesion.