• Title/Summary/Keyword: Bending stress

Search Result 1,814, Processing Time 0.032 seconds

Development of the Transfer Case for Power Distribution (동력분배용 중간변속기 개발에 관한 연구)

  • Sim, Ki-Joong;Moon, Hong-Ju;Lee, Youngchoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.95-102
    • /
    • 2018
  • This paper presents the development of the transfer case for a 3.5-ton commercial vehicle. A transfer case is composed of many parts, including helical gear, shaft, bearing, planetary gear, and others. Helical gears are currently used as power transmitting gears due to their relatively smooth and silent operation, large load carrying capacity, and operation at higher speeds. The key parameter in transfer case development is the bending stress at the root of a tooth in the helical gear. The bending stress of the helical gear has been studied through theoretical calculation and finite element method (FEM) analysis. Major factors of the bending stress calculation are determined according to American Gear Manufacturers Association (AGMA) standards, and FEM model analysis of the helical gear is conducted. FEM results are compared with theoretical calculations and the difference of the bending stress is described.

The Stress Analysis of Planetary Gear System of Mixer Reducer for Concrete Mixer Truck

  • Bae, Myung Ho;Bae, Tae Yeol;Cho, Yon Sang;Son, Ho Yeon;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2015
  • In general, the gears of mixer reducer for concrete mixer truck make use of the differential type planetary gear system to rotate mixer drum smoothly on the initial conditions. The planetary gear system is very important part of mixer reducer for concrete mixer truck because of strength problem. In the present study, calculating the gear specifications and analyzing the gear bending & compressive stresses of the differential planetary gear system for mixer reducer are necessary to analyze gear bending and compressive stresses confidently, for optimal design of the planetary gear system in respect to cost and reliability. As a result, analyzing actual gear bending and compressive stresses of the planetary gear system using Lewes & Hertz equation and verifying the calculated specifications of the planetary gear system, evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears.

FEM Residual Stress Analysis and Mechanical Properties of Silicon Nitride/Stainless Steel Joint with Multi-Interlayer (다층중간재를 사용한 질화규소/스테인레스 강 접합체의 잔류응력 해석 및 기계적 특성)

  • 박상환;김태우;최영화
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.127-134
    • /
    • 1996
  • The thermal residual stresses were estimated for brazed Si3N4/S.S.316 joints with Cu/Mo multi-interlayers using FEM, and their bending strengths at room temperature were measured for various interlayer configura-tions. The Cu, Mo multi-interlayer decreased the maximum residual stress in Si3N4 and caused the residual stress redistribution rsulting in the high residual stress at Mo interlayer. The stress distribution in the joints as well as the maximum residual stress in silicon nitride were found to be main factors for determining bending strengths and Weibull modulous of the joints. The bending strength of the brazed Si3N4/S.S.316 joints with specific Cu, Mo multi-interlayer system were found to be above 400 MPa.

  • PDF

Distortion Control of the Curved Panel Using Elastic Bending Method

  • Kim H. G.;Shin S. B.;Youn J. G.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • Finite element analysis (FEA) and experimental studies on an elastic bending method have been performed in order to control the angular distortion at the fillet weldment for curved panel. Process parameters for the elastic bending method such as clamping span and release time were analyzed with reference to welding condition and geometric effect of the curved panel, which can minimize or prevent the angular distortion by producing a proper skin stress to the fillet weldment. The amounts of the angular distortion decrease almost in a linear manner with an increase in the skin stress. The skin stress required for non-angular distortion at the fillet weldment is strongly dependent on the plate thickness, not the heat intensity applied. The clamping span for obtaining uniform skin stress was defined as functions of the plate thickness and length of the free edge. Clamp should be removed after the fillet weldment is cooled down to room temperature for non-angular distortion. Effectiveness of the elastic bending method established was verified by its application to an actual curved panel.

  • PDF

High Temperature Creep Behavior of Cr3C2 Composites (크롬-카바이드 복합체의 고온 크리프 거동)

  • 김지환;한동빈;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

The Effect of Deformation Stress-strain and Temperature on the $I_c$ Degradation of Bi-2223/Ag Tapes

  • Ha, Hong-Soo;Kim, Sang-Cheol;Ha, Dong-Woo;Oh, Sang-Soo;Joo, Jin-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1251-1252
    • /
    • 2006
  • In order to investigate 95% retained critical current of Bi-2223/Ag tapes under various stress-strain conditions, load cell attached tension and bending apparatus was used. The critical current of stress-strained tape was degraded below 95% retained critical current when tension and bending was simultaneously applied together. But only one of this tension or bending did not degrade the tape below 95% retained critical current. Deformation temperature was important to maintain the 95% retained Ic of Bi-2223/Ag tapes after bending or tension deformation because mechanical strength of tapes can be changed drastically between room temperature and 77 K.

  • PDF

Autofrettage Analysis of Pipe Bend using Finite Element Method (유한요소법을 이용한 곡관의 자긴가공 해석)

  • Park, C.J.;Koh, S.K.;Na, E.G.;Baek, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.637-642
    • /
    • 2008
  • Autofrettage analysis of a bend in the fuel injcetion pipe has been performed to investigate the distribution of residual stresses due to pipe bending and autofrettage processes. The pipe bending was simulated by metal forming analysis using finite element method, and residual stress distribution after bending was found. Autofrettage following the pipe bending was performed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the pipe bend, corresponding to theoretical 26 %, 14 %, 9 % overstrain levels, respectively. Residual stress distributions due to bending and autofrettage were evaluated.

  • PDF

The Effects of Sheet Strength and Thickness on Bending Behavior of Steel Pipes (소재강도와 두께가 파이프 굽힘변형의 꺽임발생 거동에 미치는 영향)

  • 박기철;이형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2071-2081
    • /
    • 1995
  • In order to examine the effects of yield stress, tensile strength and thickness on the buckling behavior during bending of pipes, the nonlinear finite element analysis of the 3-point bending tests was carried out using the commercial software (ABAQUS) under the condition of L4(2$^{3}$) performed according to the designed condition. Form the analysis of simulation results, it was found that yield stress and thickness were the major factors on buckling load at pipe bending and tensile strength gave little influence because the plastic strain and plastic zone are small. For the punch displacement to the occurrence of buckling, thickness is a major factor and yield stress and tensile strength are the minor factors.

Analysis on the Characteristics of the Stranded Wire Disconnected by Bending Stress (구부림 피로에 의한 연선의 반단선 특성 해석)

  • Shong, Kil-Mok;Choi, Chung-Seog;Kim, Dong-Woo;Kwak, Hee-Ro
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.464-467
    • /
    • 2003
  • In this paper, we analyzed on the characteristics of the stranded wire disconnected by bending stress. The stranded wire that used in the experiment are PVC insulated flexible cords(VCTFK) of $0.75mm^2,\;1.25mm^2,\;and\;2.0mm^2$. They are used to connect the load in low voltage. The stranded wires disconnected by bending stress were magnified with optical microscope. Using X-ray, the disconnected wire were photographed. we compared mechanical characteristics of the stranded wire between disconnected tendency and allowable current. On the mechanical strength of vinyl captyre ellipse type cords under bending stress, $1.25mm^2$ VCTFK was the strongest of them. When it was bended $826.3{\pm}7\;times$, it appeared the disconnected tendency that element wires of $1.25mm^2$ VCTFK are more about 1.67 times than element wires of $0.75mm^2$ VCTFK. In mechanical strength, $1.25mm^2$ VCTFK is higher about 1.7 times than $0.75mm^2$ VCTFK. Therefore, we found out that mechanical strength will be higher, if element wire is a lot. In comparison with bending stress, $1.25mm^2$ VCTFK is the strongest among samples, and then it is the most useful in wires of movable type.

  • PDF

Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint (십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF