• Title/Summary/Keyword: Bending process

Search Result 1,282, Processing Time 0.025 seconds

Experimental and numerical study on the PSSDB system as two-way floor units

  • Al-Shaikhli, Marwan S.;Badaruzzaman, Wan Hamidon Wan;Al Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper researches a lightweight composite structure referred to as the Profiled Steel Sheeting Dry Board (PSSDB). It is fundamentally produced by connecting a Profiled Steel Sheeting to Dry Board using mechanical screws. It is mainly employed as floor panels. However, almost all studies have focused on researching the one-way structural performance. Therefore, this study focuses on the bending behaviour of the two-way PSSDB floor system using both of Finite Element (FE) and Experimental analysis. Four panels were used in the experimental tests, and a mild steel plate has been applied at the bottom for two panels. For the FE process, models were created using ABAQUS software. 4 parametric studies have been utilized to understand the system's influential elements. From the experimental tests, it was found that using Steel Plate shall optimize the two-way action of the system and depending on the type of dry board the improvement in stiffness may reach up to 38%. It was shown from the FE analysis that the dry board, profiled steel sheeting and steel plat can affect the system by up to 10 %, 17% and 3% respectively, while applying a uniform load demonstrate a better two-way action.

A study on the die structure for the improvement of the geometric accuracy in the single point sheet incremental forming process (판재 점진 성형 공정의 정밀도 향상을 위한 다이 구조 개선에 대한 연구)

  • LEE, Won-Joon;KIM, Min-Seok;Seon, Min-Ho;YU, ․Jae-Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • Unlike other press forming processes, ISF (Incremental sheet forming) doesn't require a punch and die set. However, during the ISF processes unwanted bending deformation occurred around the target geometry. This paper is aimed to analyze the effect of the die structure, which is supported by bolts, on the geometric accuracy of the ISF processes. In this research, the ISF processes with Al5052 sheet of 0.5 mm, the tool diameter of 6 mm and the stepdown of 0.4 mm was employed. L-shaped, step-shaped, relief-shaped geometry were employed in experiments. Sectional view and the plastic strain were compared. From this research we find out that the bolt supported ISF processes increases the geometric accuracy of products very effectively.

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

Crack Propagation Analysis Using the Concept of an Equivalent Plastic Hinged Length (등가소성힌지개념을 이용한 지하구조물 균열진전해석)

  • Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.115-124
    • /
    • 2009
  • In this study, a numerical analysis technique was newly developed to evaluate the damage propagation characteristics of concrete structures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, it can be established that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.

Application Technology and Implementation Method based on VR for Korean Beef Deborning Work (한우 발골 작업을 위한 가상현실 기반의 응용 기술과 구현 방법)

  • Sung-Jun Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.71-76
    • /
    • 2024
  • In this paper, we propose a platform for learning deboning technology of Korean beef through vr-based experiential learning. The Korean beef deboning process is not only a food ingredient that has represented Korea for a long time, but also an object with high traditional cultural value. However, due to the hard and dangerous work envrionment of the deboning field, the number of skilled dobiners is gradually decreasing. This study proposes a platform that can train these deboning technicians in virtual reality and covers applied technologies used. In particular, we discussed how processes such as bending, opening, and cutting are implemented during meat cutting, which is a very important part of deboning work. In the experiment, cutting work was performed based on actual meat modeling, and complete cutting was tested.

Liquid Silicon Infiltrated SiCf/SiC Composites with Various Types of SiC Fiber (다양한 SiC 섬유를 적용한 실리콘 용융 침투 공정 SiCf/SiC 복합재료의 제조 및 특성 변화 연구)

  • Song, Jong Seob;Kim, Seyoung;Baik, Kyeong Ho;Woo, Sangkuk;Kim, Soo-hyun
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.77-83
    • /
    • 2017
  • Liquid silicon infiltration, which is one of the methods of producing fiber reinforced ceramic composites, has several advantages such as low fabrication cost and good shape formability. In order to confirm LSI process feasibility of SiC fiber, $SiC_f/SiC$ composites were fabricated using three types of SiC fibers (Tyranno SA, LoxM, Tyranno S) which have different crystallinity and oxygen content. Composites that were fabricated with LSI process were well densified by less than 2% of porosity, but showed an obvious difference in 3-point bending strength according to crystallinity and oxygen content. When composites in LSI process was exposed to a high temperature, crystallization and micro structural changes were occurred in amorphous SiOC phase in SiC fiber. Fiber shrinkage also observed during LSI process that caused from reaction in fiber and between fiber and matrix. These were confirmed with changes of process temperature by SEM, XRD and TEM analysis.

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

A Mechanical Information Model of Line Heating Process using Artificial Neural Network (인공신경망을 이용한 선상가열 공정의 역학정보모델)

  • Park, Sung-Gun;Kim, Won-Don;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.122-129
    • /
    • 1997
  • Thermo-elastic-plastic analyses used in solving plate forming process are often computationally expensive. To obtain an optimal process of line heating typically requires numerous iterations between the simulation and a finite element analysis. This process often becomes prohibitive due to the amount of computer time required for numerical simulation of line heating process. Therefore, a new techniques that could significantly reduce the computer time required to solve a complex analysis problem would be beneficial. In this paper, we considered factors that influence the bending effect by line heating and developed inference engine by using the concept of artificial neural network. To verify the validity of the neural network, we used results obtained from numerical analysis. We trained the neural network with the data made from numerical analysis and experiments varying the structure of neural network, in other words varying the number of hidden layers and the number of neurons in each hidden layers. From that we concluded that if the number of neurons in each hidden layers is large enough neural network having two hidden layers can be trained easily and errors between exact value and results obtained from trained network are not so large. Consequently, if there are enough number of training pairs, artificial neural network can infer similar results. Based on the numerical results, we applied the artificial neural network technique to deal with mechanical behavior of line heating at simulation stage effectively.

  • PDF

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.

A Study on the Reinforcement of Steel Composite Beam Using the External Post-Tensioning Method (외부 후 긴장 공법을 이용한 강합성보의 보강에 관한 연구)

  • Park, Yong-Gul;Park, Young-Hoon;Lee, Seung-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.549-558
    • /
    • 2000
  • In strengthening structure, the external post-tensioning method which secure clearness in the structure analysis process is adopted to bridges as well as architecture structure. In this study, to investigate the behavior of composite beam in the process of post-tensioning, the amount of prestress force loss, the amount of prestressed compression stress at the lower flange and the behavior of lower flange connected with anchorage are analyzed by comparing the results of finite element analysis with the measured results of installed strain gauges. After finishing the post-tensioning, the strengthening effect of external post-tensioning method is analyzed by static loading test. It is also investigated that the strengthening effect of shear section in the harped external post-tensioning specimens.

  • PDF