DOI QR코드

DOI QR Code

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process

프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구

  • Kim, Do Hyeon (School of Naval Architecture and Ocean Engineering, University of Ulsan) ;
  • Kim, Dong Uk (School of Naval Architecture and Ocean Engineering, University of Ulsan) ;
  • Seo, Hyoung-Seock (School of Naval Architecture and Ocean Engineering, University of Ulsan)
  • 김도현 (울산대학교 조선해양공학부) ;
  • 김동욱 (울산대학교 조선해양공학부) ;
  • 서형석 (울산대학교 조선해양공학부)
  • Received : 2022.04.28
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.

선박의 건조공정 중 강재의 절단과 곡 가공, 용접에 있어 화염의 사용은 필수적이다. 현재 조선소의 강재 절단과 가공 과정에서는 아세틸렌이 화염 연료로 가장 많이 사용되고 있지만, 폭발 사고의 위험성과 상대적으로 적은 발열량의 한계로 최근에는 프로판 연료의 활용이 증가하고 있다. 하지만 프로판 연료는 상대적으로 가공 속도가 느리고, 가공 시 슬래그의 발생빈도가 높아 품질이 저하된다. 대체 연료로써 프로필렌이 주목받으며 가공 속도와 품질향상에 대한 기대가 증가하고 있다. 프로필렌은 발열량이 우수한 연료로 강재 가공 간 생산성과 가공 품질의 우수성을 갖추고 있다. 이에 본 논문에서는 프로판, 프로필렌 화염을 이용한 철판 가공 시 각 연료의 연소 특성을 분석 및 비교하였다. 프로필렌 화염을 이용한 철판 가공 시 배출되는 온실가스와 유해가스를 프로판 연료의 배출량과 비교하여 저감효과를 실험적으로 확인하였다. 또한, 가공 연료에 따른 입열량이 선박용 강재의 기계적 강도 변화에 미치는 영향을 알아보기 위해 열 분포실험과 인장시험을 수행하였다. 실험 결과로, 대체 연료인 프로필렌을 사용할 때 프로판 연료에 비해 온도분포가 고르게 나타났다. 기계적 강도 실험 결과로 인장강도의 저하는 관찰되지 않았으나, 변형률은 감소하는 경향을 보였다. 본 연구의 결과를 바탕으로 향후 실제 조선소의 강재가공 및 절단과정에 적용하였을 때, 발생하는 문제점에 대한 분석 및 보완연구를 수행할 예정이다.

Keywords

Acknowledgement

본 연구는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-003)과 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구(P0001968, 2022년 산업혁신인재성장지원사업)의 결과입니다.

References

  1. American Society for Testing and Materials(ASTM)(2013), Standard Test Methods for Tension Testing of Metallic Materials (ASTM E8/E8M-13a), ASTM International: West Conshohocken, PA, USA.
  2. Andrew Pytel and Jaan Kiusalaas(2013), Mechanics of Materials, Cengage learning, second edition.
  3. Cho, B. K., D. W. Choi, G. B. Kim, Y. J. Chang, J. H. Song, and C. H. Jeon(2009), Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor, Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 9, pp. 658-665.
  4. Choi, Y. J. and J. W. Choi(2020), Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200'C for the Assessment of the Risks of Fire and Explosion of Propylene, Korean Chem. Eng. Res., Vol 58, No. 3, pp. 356-361.
  5. Explore the World of Piping(2022), Lower and Upper Explosive Limits for Flammable Gases and Vapors, https://www.wermac.org/safety/safety_what_is_lel_and_uel.html.
  6. Han, S. H., H. C. Lee, K. S. Park, and T. O. Kim(2014), Consequence Analysis for Fire and Explosion Accidents in Propylene Recovery Process, KIGAS, Vol. 18, No. 1, pp. 52-60.
  7. HORIBA(2001), Horiba MEXA-7000DEGR Instruction Manual.
  8. Jeong, T. H., S. G. Kang, J. K. Lee, J. G. Ahn(2018), Introduction to International Maritime Organization (IMO) GHG Emissions Regulation and Domestic and Foreign Response Measures, The Society of Naval Architects of Korea, Vol. 55, No. 4, pp. 48-54.
  9. KEA(2021), Energy issue briefing, No. 166, pp. 1-5.
  10. Kim, J. W., H. Lim, Y. G. Go, and C. H. Jeon(2016), Characteristics of UBC and NOx Emission in Air Staging Combustion, Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 10, pp. 637-644.
  11. KOSA(2019), An Analysis of the Shipment Structure of Steel Report.
  12. Lee, J. B., D. Y. Kim, D. H. Shin, S. H. Lee(2013), Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process, Journal of ILASS-Korea, Vol. 18, No. 4, pp. 202-208 https://doi.org/10.15435/JILASSKR.2013.18.4.202
  13. Lee, Y. B., N. I. Cho, and K. E. Park(1996), A study on surface fatigue crack behavior of SS400 weldment, Journal of KWS, Vol. 14, No. 2, pp. 90-95
  14. Ministry of Knowledge Economy(2011), Greenhouse gases.energy management systems in the shipbuilding industry standard manual, pp. 1-271
  15. Moon, H. C., C. B. Sun, G. D. Lee, B. H. Ahn, L. T. Lim, and S. S. Hong(1999), Catalytic Reduction of Nitric Oxide by Carbon Monoxide over Perovskite-Type Oxide, J. Korean Ind. Eng. Chem., Vol. 10, No. 3, pp. 407-414
  16. Nan(2021), Ladipo market explosion caused by acetylene gas - LPG retailers, https://guardian.ng/news/nigeria/ladipo-market-explosion-caused-by-acetylene-gas-lpg-retailers/.
  17. Park, D. B., B. K. Cho, Y. J. Chang, and C. H. Jeon (2008), The Impact Equivalence Ratio and Fuel-Air Unmixedness on NOx Emission Characteristics, Trans. Korean Soc. Mech. Eng. spring conference, pp. 376-380.
  18. Park, M. H., J. P. Lee, B. J. Jin, I. J. Kim, J. S. Kim, and I. S. Kim(2017), An Experiment Study for Hardness Characteristic of Weldment according to Welding Heat-Input of Vertical GMA Welding Process, Journal of Welding and Joining, Vol. 35, No. 2, pp. 35-42.
  19. Yoon J. H. and B. S. Lee(2003), The application of small specimen technique to the evaluation of tensile properties of the irradiated materials.