• Title/Summary/Keyword: Bending angle

Search Result 654, Processing Time 0.038 seconds

Effect of Bend Angle on the Collapse Behavior of Locally Wall Thinned Pipe Bends (감육 곡관의 붕괴거동에 미치는 곡관 굽힘각의 영향)

  • Na Man-Gyun;Kim Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1269-1275
    • /
    • 2006
  • The purpose of this study is to investigate the effect of bend angle on the collapse behavior of locally wall thinned pipe bends. For this purpose, the present study performed three-dimensional finite element analysis on the 30-, 60-, and 90-degree pipe bends with local wall thinning at the center of intrados, extrados, and crown, and evaluated the collapse moment for different thinning dimensions under closing- and opening-mode bending with a constant internal pressure. The results showed that, for intrados and extrados wall thinning, the reduction in the collapse moment due to local wall thinning became significant with decreasing bend angle of pipe bends. This effect of bend angle was enhanced with increasing thinning dimensions, and it was clearer fur opening-mode bending than for closing-mode bending. For crown wall thinning, however, the effect of bend angle was unclear and was less sensitive to the change of wall thinning shapes.

The Effects on Kinematics and Joint Coordination of Ankle and MTP Joint as Bending Stiffness Increase of Shoes during Running (달리기 시 인솔의 굽힘 강성 증가에 따른 발목과 중족골 관절의 운동학적 변인 및 관절 협응에 미치는 영향)

  • Kim, Sungmin;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Objective: The aim of this study was to analyze body stability Joint coordination pattern though as bending stiffness of shoes during stance phase of running. Method: 47 male subjects (Age: 26.33 ± 2.11 years, Height: 177.32 ± 4.31 cm, Weight: 65.8 ± 3.87 kg) participated in this study. All subjects tested wearing the same type of running shoes by classifying bending stiffness (A shoes: 3.2~4.1 N, B shoes: 9.25~10.53 N, C shoes: 20.22~21.59 N). They ran 10 m at 3.3 m/s (SD ±3%) speed, and the speed was monitored by installing a speedometer at 3 m intervals between force plate, and the measured data were analyzed five times. During running, ankle joint, MTP joint, coupling angle, inclination angle (anterior-posterior, medial-lateral) was collected and analyzed. Vector coding methods were used to calculate vector angle of 2 joint couples during running: MTP-Ankle joint frontal plane. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that there was an interaction between three shoes and phases for MTP (Metatarsalphalangeal) joint angle (p = .045), the phases in the three shoes showed difference with heel strike~impact peak (p1) (p = .000), impact peak~active peak (p2) (p = .002), from active peak to half the distance to take-off until take-off (p4) (p = .032) except for active peak~from active peak to half the distance to take-off (p3) (p = .155). ML IA (medial-lateral inclination angle) for C shoes was increased than other shoes. The coupling angle of ankle angle and MTP joint showed that there was significantly difference of p2 (p = .005), p4 (p = .045), and the characteristics of C shoes were that single-joint pattern (ankle-phase, MTP-phase) was shown in each phase. Conclusion: In conclusion, by wearing high bending stiffness shoes, their body instability was increased during running.

Fabrication or Bending Actuator Using Shape Memory Alloy and Basic Experiment or Control (형상기억합금을 이용한 bending 액츄에이터의 제작 및 컨트롤을 위한 기초실험)

  • Kim, M.S.;Choi, N.B.;Kim, D.W.;Lee, S.H.;Lee, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.497-500
    • /
    • 1997
  • In this paper, we proposes a bending actuator using shape memory alloy coil-type springs. By the heating of two shape memory alloy coil-type springs sequentially, the bending and stretching motion of the actuator is possible. We measure the bending angle and repeated bending motion with the various currents. Furthermore, we control the bending angle of the 1 directional bending actuator with sensors. The performance of the actuator has been characterized or the possible application for catheter.

  • PDF

Simulation and Evaluation of Bending Strength of FRP for Insulator According to Winding Angle (와인딩 각도에 따른 절연용 FRP의 굽힘강도 시뮬레이션 및 평가)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.436-439
    • /
    • 2003
  • FRP has been used widely for insulator. FRP consists of fiber and resin. The fiber contributes the high strength and modulus to the composite. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, FRP was made unidirectionally by pultrusion method. Outer part of the FRP was made by filament winding method to give fiber orientation to the FRP. And outer part of FRP was also made by wrapping method. The bending strength and bending stresses of FRP rods were simulated according to the winding orientation of glass fiber. The bending strength of FRP was also evaluated. The results of simulation and evaluation were compared each other to investigate main stresses which affect the fracture of FRP. The main stresses which had a great effect on the strength of FRP were shear stresses. Bending strength of the FRP was different with the winding angle. The bending strength of $15^{\circ}$ winded FRP was the highest.

  • PDF

Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests (파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가)

  • Kim, Jin-Weon;Na, Yeon-Soo;Lee, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

Sectional forming analysis by membrane finite elements considering bending effects (굽힘효과를 고려한 박막 유한요소에 의한 단면 성형해석)

  • Kim, Jun-Bo;Lee, Gwang-Byeong;Keum, Yeong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.493-503
    • /
    • 1998
  • The sectional forming analysis considering bending effects from the geometrically deformed shape of two linear membrane finite elements(called super element) was performed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the changes in the interior angle at the middle node of super element, and are agumented to the membrane stretch forces. In order to verify the validity of the bending formulation, the simulation results for the stretch, draw, and bend sections were compared with membrane analysis results and measurements.

An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending (순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

A Study on Performance-Analysis and Control of the Active Catheter (작동형 내시경의 성능 해석 및 제어에 관한 연구)

  • Cheong, J.P.;Kim, J.H.;Lee, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

An Experimental Study on the Cold Bending of Reinforcing Bar (철근의 Bending and Straightening에 대한 실험적 연구)

  • 조현우;최희복;강경인
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.109-113
    • /
    • 2003
  • In this experiment, we distribute the bending angle to 60$^{\circ}$, 90$^{\circ}$, 120$^{\circ}$, and we separate it in to two groups. One is straightening right after bending and the other is straightening after one week. The bars we will use are HD13 and HD16. The number of tests will be 60 times. In the case of HD16, the increase of bending angle decreased yield strength and maximum strength. And compared with thinner bars, HD16 showed bigger differences in yield strength and maximum strength when the 'being bent' duration got longer. So it shows that when we bend and after straighten a bar, stress change takes place on the surface of the bar. At the beginning it shows it's ductility after that it deforms while transforming it's character to destroying. And also, if we straighten a bar after bending, it doesn't get straighten like the original form. So it makes torsion and this torsion makes moments in different areas.

  • PDF