• 제목/요약/키워드: Bending analysis

검색결과 3,398건 처리시간 0.027초

내압과 내면 굽힘하중 조건에서 곡관의 거동에 미치는 굽힘각의 영향 (Effect of Bend Angle on the Behavior of pipe Bend under Internal Pressure and In-Plane Bending toads)

  • 김진원;나만균
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.18-25
    • /
    • 2005
  • This study performed finite element analysis on the pipe bend with various bend angles under loading conditions of internal pressure and combined pressure and bending, to investigate the effect of bend angle on the collapse behavior of pipe bend and on the stress state in the bend region. In the analysis, the pipe bends with bend angle of $5\~90^{\circ}$ were considered, and the bending moment was applied as in-plane closing and opening modes. From the results of analysis, it was found that the collapse moment of pipe bend increases with decreasing bend angle. As the bend angle decreases, also, the equivalent stress at intrados region increases regardless of bending mode. Under closing mode bending especially, the increase in stress at intrados is significant so that the maximum stress region moves from crown to intrados with decreasing bend angle.

이중탄성계수 복합재료판의 좌굴 (Buckling of Bimodulus Composite Thin Plate)

  • 이영신;김종천
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

Comments on a Case Study on Engineering Failure Analysis of Link Chain

  • Yu, George Y.H.
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.544-545
    • /
    • 2021
  • The article by Tae-Gu Kim et al. conducted elastic FE modeling, which was inappropriate for fracture of elastic-plastic chain material (11.3% of elongation). FE analysis results and the findings in the fracto-graphic analysis did not tally but contradicted each other. The article identified "incorrect installation"/bending forces as the root cause while FE results of the chain under bending forces showed very low stresses at fracture locations but the highest stress in the middle of shank of the chain. The article's "step-like topographies indicating the fracture due to bending moment rather than uniaxial tension" lacked scientific support. The load value carried by each chain section under bending/incorrect installation was only half of that under tension, thus the article using same load value in FE simulation comparison for bending and tension was incorrect. The real cause of the chain fracture was likely improper checking the lifted load or/and using the wrong chain with much lower safety working load.

굽힘 첨가 박막요소에 의한 알루미늄 샌드위치 판재 성형공정의 단면 유한요소 해석 (Sectional Finite Element Analysis of Forming Process of Aluminum Sandwich Sheet by Bending Augmented Membrane Elements)

  • 이재경;금영탁;유용문;이명호
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.91-100
    • /
    • 2001
  • A sectional FEA program is developed lot analyzing forming processes of sandwich sheets, which are intensively used recently as a lightweight material of an automobile body. The aluminum sandwich sheet consists of two aluminum skins and a polyprophylen core in between. The aluminum sandwich sheet is dominantly effected by the bending effects in small radius of curvature, so that an appropriate description of bending effects is required to analyze the forming processes. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the curvature of the tool and are added to the membrane stretch forces. To verify the validity of the developed program the sectional FEA results in stretch/draw forming Processes of a square cup and draw forming Processes of an outer hood panel were compared with the measurements.

  • PDF

작동형 내시경의 성능 해석 및 제어에 관한 연구 (A Study on Performance-Analysis and Control of the Active Catheter)

  • 정종필;김종현;이장무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.556-561
    • /
    • 2000
  • This paper deals with the control of an active bending actuator fur a catheter. The bending actuator with 40mm in length utilizes three zigzag SMA (shape memory alloy) springs which are equally located in the circumference between inner $({\phi}2.5 mm)$ and outer $({\phi}3.0mm)$ tube. It is purposed on realization of desired bending angle $(90^{\circ})$ and direction $(360^{\circ})$. It is also installed in front of the catheter and used to guide a path at extremely bent or branched blood vessel. The performance-analysis of the bending actuator are investigated fur the purpose of optimizing the control of the bending actuator. The analog joy stick is used to command a bending angle and direction for the fast and accurate response. According to the commands of the joy stick, tensile force of each SMA spring is computed and obtained by controlling the temperature of each SMA spring using PWM (pulse width modulation) of supplied electric power.

  • PDF

3점 굽힘에서의 스프링백에 관한 연구 (A Study on the Springback for Three Point Bending)

  • 이호용;황병복
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.401-414
    • /
    • 1994
  • Springback for the three point bending is anlayzed and experimented. Neutral axis is assumed to remain at the midthickness for large ratio of radius of curvature to thickness. Pure bending theory is used to be extended to the analysis of the springback for three point bending. The specimen is thought to be divided into numerous small elements. The theory for pure bending is then adopted for analysis of each element to obtain springback in terms of the relationship between initial and final deflections. the boundary conditions between neighborhood elements are the deflection and slope which should be the same. Deflection is calculated by summing up the deflections of each element. Experiments have been performed for different conditions which are punch radius, span length, and initial deflections. Comparisons between the analytical solution and experimental results show the same trends.

  • PDF

SLM법으로 매크로 육각다공질 구조를 부여한 치과 임플란트의 역학 분석 (Mechanical Analysis of Macro-Hexagon Porous Dental Implant Using Selective Laser Melting Technique)

  • 김부섭;최성민
    • 대한치과기공학회지
    • /
    • 제33권1호
    • /
    • pp.55-61
    • /
    • 2011
  • Purpose: In this study, FEM(Finite Element Method) and bending strength test was conducted using normal implant and porous implant for the mechanical estimation of porous dental implant made by SLM method. Methods: Mechanical characteristics of PI(porous implant) and NI(normal implant) applied distributed loads(200N, 500N) were observed through FEM analysis. And each bending strength was gotten through bending test using MTS(Mechanical Test System, Instron 8871). Results: The result of FEM analysis was observed that stress difference between upper and surface of PI was 12 times, while NI was 2 times. The result of bending test was observed that bending strength of PI was lower than NI. we made a decision about this result that cross-sectional area of NI was larger than the PI. Conclusion: The stress shielding ability of porous implant was better than normal implant through result of FEM analysis. And bending strength of porous implant was lower than NI. We think that cause of this result was difference of cross-sectional area.

발전 계획에서 순환 물 펌프 고장 분석 (Failure Analysis of Circulating Water Pump Shaft in Power Plant)

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.125-128
    • /
    • 2021
  • This paper presents the root cause failure analysis of the circulating water pump in the 560 MW thermal power plant. A fractured austenitic stainless-steel shaft operated for 24 years was examined. Fracture morphology was investigated by micro and macro-fractographic analysis. The metallurgical analyses including chemical analysis, metallography and hardness testing were performed. The analysis reveals that the pump shaft was fractured due to the reverse bending load with combination of rotating bending load. Corrective actions for plant operator was recommended based on the analysis.

복강경수술기구의 벤딩메커니즘 해석 및 벤딩커플러 최적설계 (Bending Mechanism Analysis and Bending Coupler Optimal Design for Laparoscopic Surgical Instrument)

  • 황달연;문대환;최승욱;원종석
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.434-441
    • /
    • 2013
  • Bending motion has been used in the surgical instruments with bending structures and tendon mechanisms. A simplified bending angle amplification ratio between the proximal and distal bending joint was derived in this article. The bending structure of disk and rib in the proximal joint was analyzed based on finite element method with an emphasis on the circumferential uniformity of bending stiffness. Regarding the distal joint, optimal design and sensitivity analysis was done with four design variables of outer and inner diameter, rib height and rib width while maximizing the deformation under the stress distribution below the yield stress. Outer diameter and rib width are most critical to maximum deformation as the outer diameter and inner diameters are so to maximum equivalent stress.

원형으로 굽은 광도파로의 low bending loss를 위한 trench 구조설계: 원통좌표계 FD-BPM (A Trench Structure for Low Bending Loss of Bent Optical Waveguides)

  • 한영진;김창민
    • 한국광학회지
    • /
    • 제6권4호
    • /
    • pp.373-378
    • /
    • 1995
  • 원통좌표계에서의 FD-BPM(finite difference-beam propagation method)을 이용하여 굽은 광도파로의 bending loss를 계산하였다. Bending loss를 최소화하기 위해 trench구조를 적용하였으며 다음의 세가지 측면에서 해석하였다. 1)trench구조가 없을때 곡률반경에 따른 bending loss, 2)폭과 위치가 일정한 trench구조가 있을때 곡률반경과 굴절율차에 따른 bending loss, 3)trench의 위치가 일정할 때 trench의 폭에 따른 bending loss를 계산하였다.

  • PDF