• Title/Summary/Keyword: Bending System

Search Result 1,507, Processing Time 0.031 seconds

Development of a Process Sequence Determination Technique by Fuzzy Set Theory for Electric Product with Piercing and Bending Operations (퍼지셋을 이용한 퍼어싱 및 굽힘공정을 갖는 전기제품의 공정순서 결정기법 개발)

  • Kim J.H.;Kim Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.137-146
    • /
    • 2005
  • This paper describes a research work to develop a computer-aided design for the product made by progressive working of bending and piercing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout, strip layout modules. The system is designed by considering several factors, such as piercing and bending sequences by fuzzy set theory, complexities of blank geometry, punch profiles, and the availability of a press equipment. Strip layout drawing generated in the strip layout module is presented in 3-D graphic forms, including piercing and bending sequences with punch profiles divided into for external area. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

Computerized Human Body Modeling and Work Motion-capturing in a 3-D Virtual Clothing Simulation System for Painting Work Clothes Development

  • Park, Gin Ah
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.130-143
    • /
    • 2015
  • By studying 3-D virtual human modeling, motion-capturing and clothing simulation for easier and safer work clothes development, this research aimed (1) to categorize heavy manufacturing work motions; (2) to generate a 3-D virtual male model and establish painting work motions within a 3-D virtual clothing simulation system through computerized body scanning and motion-capturing; and finally (3) to suggest simulated clothing images of painting work clothes developed based on virtual male avatar body measurements by implementing the work motions defined in the 3-D virtual clothing simulation system. For this, a male subject's body was 3-D scanned and also directly measured. The procedures to edit a 3-D virtual model required the total body shape to be 3-D scanned into a digital format, which was revised using 3-D Studio MAX and Maya rendering tools. In addition, heavy industry workers' work motions were observed and recorded by video camera at manufacturing sites and analyzed to categorize the painting work motions. This analysis resulted in 4 categories of motions: standing, bending, kneeling and walking. Besides, each work motion category was divided into more detailed motions according to sub-work posture factors: arm angle, arm direction, elbow bending angle, waist bending angle, waist bending direction and knee bending angle. Finally, the implementation of the painting work motions within the 3-D clothing simulation system presented the virtual painting work clothes images simulated in a dynamic mode.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Smart System Identification of Super High-Rise Buildings using Limited Vibration Data during the 2011 Tohoku Earthquake

  • Ikeda, A.;Minami, Y.;Fujita, K.;Takewaki, I.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.255-271
    • /
    • 2014
  • A method of smart system identification of super high-rise buildings is proposed in which super high-rise buildings are modeled by a shear-bending system. The method is aimed at finding the story shear and bending stiffnesses of a specific story only from the horizontal floor accelerations. The proposed method uses a set of closed-form expressions for the story shear and bending stiffnesses in terms of the limited floor accelerations and utilizes a reduced shear-bending system with the same number of elements as the observation points. A difficulty of prediction of an unstable specific function in a low frequency range can be overcome by introducing an ARX model and discussing its relation with the Taylor series expansion coefficients of a transfer function. It is demonstrated that the shear-bending system can simulate the vibration records with a reasonable accuracy. It is also shown that the vibration records at two super high-rise buildings during the 2011 Tohoku (Japan) earthquake can be simulated with the proposed method including a technique of inserting degrees of freedom between the vibration recording points. Finally it is discussed further that the time-varying identification of fundamental natural period and stiffnesses can be conducted by setting an appropriate duration of evaluation in the batch least-squares method.

Finite Element Model based on Strain Tests for Predicting Bending Strength of Small Gears for Aircraft

  • Kim, Taehyung;Seok, Taehyeon;Seol, Jin-woon;Lee, Byung-ho;Kwon, Byung-gi;Choi, Jong-yoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2020
  • This study proposes a finite element (FE) model for predicting the bending strength of small gears used in electro-mechanical actuators for aircraft. First, a strain gauge was attached to the tooth root of test gear, and the strain was measured. Subsequently, the FE model was applied to calculate the strain of the test gear, and the modeled strain was compared with the experimental strain. The results confirmed that the FE strain was very close to the experimental strain and the FE model was valid. This FE model was extended to the bending strength analysis of several small gear tooth models. The bending strengths of all the tooth models were almost identical to the ISO theoretical bending strength. Finally, the FE model was validated and the reliability of the modeled bending strength was evaluated through the strain measurement experiment.

A Study on the Design and Development of Three Dimensional Bending Machine (3차원 Bending Machine 설계 및 개발에 관한 연구)

  • 이춘만;임상헌;김현진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1448-1451
    • /
    • 2004
  • This study is concerned about the design and development of three dimensional bending machine. The purpose of this study is design and development of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. Based on this study, the three dimensional bending machine was developed. In order to evaluate a performance and reliability of the developed three dimensional bending machine, we used laser interferometer and three axial measuring system.

  • PDF

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

A Study on the Bending and Seismic Performance of High Performance Cold Forming Composite Beam

  • Choi, Young Han;Kim, Sung Bae;Hong, Hyung Ju;Kim, Sang Seup
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1772-1783
    • /
    • 2018
  • Nowadays, the researches about composite structure system are being implemented in various fields, and many steel structures are designed based on that. In this study, the bending and seismic performance of the newly developed high-performance cold forming composite beam are evaluated by several experiments. As a result of the bending performance test, the bending moment of beam was increased stably depending on the depth and plate thickness of beam, and it is considered that the bending moment can be evaluated by the equation of a composite beam design. As a result of the seismic performance test, it was verified that sufficient seismic performance was obtained despite the increase of a negative moment rebar and depth of beam. In addition, the nominal bending moment has obtained the strength above the plastic bending moment, and also the plastic rotation angle has satisfied the requirement of composite intermediate moment frame.

Tie-bar Elongation Evaluation of Toggle Type Injection Molding Machine (토글식 사출성형기의 타이바 연신율 평가)

  • Jung, Hyun-Suk;Yoo, Joong-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.672-676
    • /
    • 2012
  • This paper studies the relation between the deformation of platen caused by clamping force, the bending stress and elongation at the tie-bar in injection molding machine of toggle type. These data are analyzed through analytical molding and numerical approach by tensile tester. The effect of bending stress on the stress concentration of teeth and nut system is also analyzed by 2 dimensional numerical approach. The bending stress of tie-bar caused by platen deformation becomes less than 20% of average tensile stress. And the effect of bending stress on stress concentration at teeth and nut system of tie-bar is found to be small.

Development and validation of strip bending tester for measuring mechanical properties of freestanding thin films (자유지지 박막의 기계적 물성 측정을 위한 띠굽힘시험기의 개발 및 검증)

  • Park, Jung-Min;Kim, Jae-Hyun;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.49-55
    • /
    • 2008
  • Strip bending test has been frequently utilized to measure the mechanical properties of freestanding thin films in substitute for the micro-tensile test. However, in spite of its simplicity and reliability, strip bending test has a few problems, for example, the measurement of strain and the calculation of stress at zero strain. In this study, these problems are precisely reviewed and proved. Upon this review, strip bending tester has been developed, which uses the confocal laser displacement meter to measure the deformed configuration of the specimen and the possibility and limitation of this testing system is carefully investigated including the estimation of uncertainty of the measurement of strain. Finally, to prevent errors and to improve the accuracy of this testing system, the shape of the specimen has been carefully studied and is proposed.

  • PDF