• 제목/요약/키워드: Bending Stiffness Reinforcement

검색결과 75건 처리시간 0.03초

훨타워 시험 수행을 위한 무힌지 블레이드 플렉셔 굽힘 강성 보강 (Hingeless Blade Flexure Bending Stiffness Reinforcement for Whirl Tower Test)

  • 김태주;기영중
    • 한국항공우주학회지
    • /
    • 제42권5호
    • /
    • pp.390-397
    • /
    • 2014
  • BO-105 헬리콥터는 무힌지 로터 허브시스템이 적용되었으며, 블레이드의 루트 영역이 무힌지 허브 시스템의 플렉셔에 해당한다. 따라서 본 블레이드를 이용한 훨타워 시험 수행을 대비하여 굽힘 강성이 낮은 플렉셔 부분에 대한 굽힘 강성 보강을 수행하였다. 플렉셔 굽힘 강성 보강 수행을 위해 플렉셔 부분의 단면 형상을 모델링하여 굽힘 강성을 계산하였으며, 이를 바탕으로 강성 보강을 위한 복합재의 두께를 선정하였다. 보강된 플렉셔의 실제 굽힘 강성을 확인하기 위하여 강성보강 전 형상에 대한 강성 측정 시험과 강성보강 이후 형상에 대한 강성 측정 시험을 수행하여 결과를 비교하였다.

Numerical investigation of effect of geotextile and pipe stiffness on buried pipe behavior

  • Candas Oner;Selcuk Bildik;J. David Frost
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.611-621
    • /
    • 2023
  • This paper presents the results of a numerical investigation of the effect of geotextile reinforcement on underlying buried pipe behavior using PLAXIS 3D. In this study, variable parameters such as the in-plane stiffness of the geotextile, the pipe stiffness, the soil stiffness, the footing width, the geotextile width, and the location of the geotextile reinforcement layer are investigated. Deflections and bending moments acting on the pipe are evaluated for different combinations of variables and are presented graphically. It is observed that with an increase in the in-plane stiffness of the geotextile reinforcement, there is a tendency for a decrease in both deflections in the pipe and bending moments acting on the pipe. Conversely, with an increase in the pipe stiffness, geotextile reinforcement efficiency decreases. In the investigated region of soil stiffness, for the given pipe and geotextile stiffness, an optimum efficiency of geotextile is observed in medium dense soils. Further, it is shown that relative lengths of geotextile and footing has an important role on geotextile efficiency. Lastly, it is also demonstrated that relative location of geotextile layer with respect to the buried pipe plays an important role on the geotextile efficiency in reducing the bending moments acting on the pipe and deflections in the pipe. In general, geotextiles are more efficient in reducing the bending moments as opposed to reducing deflections of the pipe. Numerical validation is done with an experimental study from the literature to observe the applicability of the numerical model used.

Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength

  • Turk, Kazim;Caliskan, Sinan;Sukru Yildirim, M.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.337-346
    • /
    • 2005
  • The paper reports on a study of bond strength between reduced-water-content concrete and tensile reinforcement in spliced mode. Three different diameters (12, 16 and 22 mm) of tensile steel were spliced in the constant moment zone, where there were two bars of same size in tension. For each diameter of reinforcement, a total of nine beams ($1900{\times}270{\times}180mm$) were tested, of which three beams were with no axial force (positive bending) and the other six beams were with axial force (combined bending). The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. It was found that there was a considerable size effect in the experimental results, i.e., as the diameter of the reinforcement reduced the bond strength and the deflection recorded at the midspan increased significantly, whilst the stiffness of the beams reduced. It was also found for all reinforcement sizes that higher bond strength and stiffness were obtained for beams tested in combined bending than that of the beams tested in positive bending only.

자동차 후드의 정강성을 고려한 위상 최적화 (Topology Optimization of a Vehicle's Hood Considering Static Stiffness)

  • 한석영;최상혁;박재용;황준성;김민수
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.69-74
    • /
    • 2007
  • Topology optimization of the inner reinforcement for a vehicle's hood has been performed by evolutionary structural optimization(ESO) using a smoothing scheme. The purpose of this study is to obtain optimal topology of the inner reinforcement for a vehicle's hood considering the static stiffness of bending and torsion simultaneously. To do this, the multiobjective optimization technique was implemented. Optimal topologies were obtained by the ESO method. From several combinations of weighting factors, a Pareto-optimal solution was obtained. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization of the inner reinforcement of a vehicle's hood considering the static stiffness of bending and torsion.

휨강성을 고려한 수정 FHWA 쏘일네일 설계법 제안 (Modified FHWA Design Method Considering Bending Stiffness of Soil Nail)

  • 김낙경;정정희;주용선;김성규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1406-1416
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley(1990) suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

  • PDF

Experimental study on flexural strength of reinforced modular composite profiled beams

  • Ahn, Hyung-Joon;Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.313-328
    • /
    • 2008
  • This study attempts to suggest bending reinforcement method by applying bending reinforcement to composite profile beam in which the concept of prefabrication is introduced. Profile use can be in place of framework and is effective in improvement of shear and bending strength and advantageous in long-term deflection. As a result of experiment, MPB-CB2 with improved module had higher strength and ductility than the previously published MPB-CB and MPB-LB. In case of bending reinforcement with deformed bar and built-up T-shape section based on MPB-CB2, the MPB-RB series reinforced with deformed bar were found to have higher initial stiffness, bending strength and ductility than the MPB-RT series. The less reinforcement effect of the MPB-RT series might be caused by poor concrete filling at the bottom of the built-up T-shape. In comparison between theoretical values and experimental values using minimum yield strength, the ratio between experimental value and theoretical value was shown to be 0.9 or higher except for MPB-RB16 and MPB-RT16 that have more reinforcement compared to the section, thus it is deemed that the reinforced modular composite profiled beam is highly applicable on the basis of minimum yield strength.

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

신뢰성 해석을 이용한 차량 후드 보강재의 위상최적화 (Topology Optimization of the Inner Reinforcement of a Vehicle's Hood using Reliability Analysis)

  • 박재용;임민규;오영규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.691-697
    • /
    • 2010
  • Reliability-based topology optimization (RBTO) is to get an optimal topology satisfying uncertainties of design variables. In this study, reliability-based topology optimization method is applied to the inner reinforcement of vehicle's hood based on BESO. A multi-objective topology optimization technique was implemented to obtain optimal topology of the inner reinforcement of the hood. considering the static stiffness of bending and torsion as well as natural frequency. Performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints. To evaluate the obtained optimal topology by RBTO, it is compared with that of DTO of the inner reinforcement of the hood. It is found that the more suitable topology is obtained through RBTO than DTO even though the final volume of RBTO is a little bit larger than that of DTO. From the result, multiobjective optimization technique based on the BESO can be applied very effectively in topology optimization for vehicle's hood reinforcement considering the static stiffness of bending and torsion as well as natural frequency.

Effective torsional stiffness of reinforced concrete structural walls

  • Luo, Da;Ning, Chaolie;Li, Bing
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.119-127
    • /
    • 2019
  • When a structural wall is subjected to multi-directional ground motion, torsion-induced cracks degrade the stiffness of the wall. The effect of torsion should not be neglected. As a main lateral load resisting member, reinforced concrete (RC) structural wall has been widely studied under the combined action of bending and shear. Unfortunately, its seismic behavior under a combined action of torsion, bending and shear is rarely studied. In this study, torsional performances of the RC structural walls under the combined action is assessed from a comprehensive parametrical study. Finite element (FE) models are built and calibrated by comparing with the available experimental data. The study is then carried out to find out the critical design parameter affecting the torsional stiffness of RC structural walls, including the axial load ratio, aspect ratio, leg-thickness ratio, eccentricity of lateral force, longitudinal reinforcement ratio and transverse reinforcement ratio. Besides, to facilitate the application in practice, an empirical equation is developed to estimate the torsional stiffness of RC rectangular structural walls conveniently, which is found to agree well with the numerical results of the developed FE models.

Efficient elastic stress analysis method for piping system with wall-thinning and reinforcement

  • Kim, Ji-Su;Jang, Je-Hoon;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.732-740
    • /
    • 2022
  • A piping system stress analysis need to be re-performed for structural integrity assessment after reinforcement of a pipe with significant wall thinning. For efficient stress analysis, a one-dimensional beam element for the wall-thinned pipe with reinforcement needs to be developed. To develop the beam element, this work presents analytical equations for elastic stiffness of the wall-thinned pipe with reinforcement are analytically derived for axial tension, bending and torsion. Comparison with finite element (FE) analysis results using detailed three-dimensional solid models for wall-thinned pipe with reinforcement shows good agreement. Implementation of the proposed solutions into commercial FE programs is explained.