• Title/Summary/Keyword: Bending Performance Test

Search Result 436, Processing Time 0.027 seconds

The Experimental Study on Structural Performance of the Beam-Slab System (보-슬래브 시스템 구조성능에 관한 실험적 연구)

  • Lee, Myung Jae;Kim, Cheol Hwan;Lee, Seung Joon;Kim, Won Ki;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.91-101
    • /
    • 2004
  • This study sought to suggest a structural design guide and to investigate the structural performances of the new beam-slab system in order to decrease the height of floors in high-rise steel structure apartments. Experiments were performed to assess the capacity of the new beam-slab system in a steel structure with 9.8-m span, particulary structural material test, pure bending test of composite beam, three-point bending test of composite beam, and bending and shearing tests. Results showed that the suggested composite beam had stable structural behavior when stud connectors were located in the upper flange, and upper bars were calculated normally according to the design of the slab.

An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.68-77
    • /
    • 2012
  • The joint of existing steel grid composite deck is composed of lap splice of reinforcing bar with end hooks and field-placed concrete. In this study, bending tests of deck joint composed of concrete shear key and high tension bolts are carried out for the design variable, concrete shear key strengthened with steel plate or not, and test results are compared with flexural performance of the existing deck joint. Test results showed that the mechanical deck joint has about 30% ~ 60% more ultimate bending strength than the existing joint. According to analysis results of moment-curvature relationship, the initial bending stiffness of the existing deck joint is some higher than that of mechanical joint. But, after crack failure the structural performance of the existing deck joint is rapidly reduced. Furthermore, the deck joint with the strengthened shear key with steel plate has more bending moment capacity than the deck joint without strengthening. And strengthening of shear key has positive influence on the increase of bending stiffness.

Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness (불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Kim, Jin-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.

Seismic behavior of steel reinforced concrete cross-shaped column under combined torsion

  • Chen, Zongping;Liu, Xiang
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • Experiments were performed to explore the hysteretic performance of steel reinforced concrete (SRC) cross-shaped columns. Nine specimens were designed and tested under the combined action of compression, flexure, shear and torsion. Torsion-bending ratio (i.e., 0, 0.14, 0.21) and steel forms (i.e., Solid - web steel, T - shaped steel, Channel steel) were considered in the test. Both failure processes and modes were obtained during the whole loading procedure. Based on experimental data, seismic indexes, such as bearing capacity, ductility and energy dissipation were investigated in detail. Experimental results suggest that depending on the torsion-bending ratio, failure modes of SRC cross-shaped columns are bending failure, flexure-torsion failure and torsion-shear failure. Shear - displacement hysteretic loops are fuller than torque - twist angle hysteretic curves. SRC cross-shaped columns exhibit good ductility and deformation capacity. In the range of test parameters, the existence of torque does not reduce the shear force but it reduces the displacement and bending energy dissipation capacity. What is more, the bending energy dissipation capacity increases with the rising of displacement level, while the torsion energy dissipation capacity decreases.

High Temperature Properties of Fiber Reinforced Composites under the Different Loading Conditions

  • Weiguang, Hu;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.188-192
    • /
    • 2017
  • The mechanical properties of composites are significantly affected by external environment. It is essential to understand the degradation of material performance and judge the material's lifetime in advance. In the current research, changes in mechanical properties of glass fiber and unsaturated polyester composite materials (GFRP, Glass fiber reinforced plastic) were investigated under different bending stress and submerged in hot water at a temperature of $80^{\circ}C$. Loading time of 100 H (hours), 200 H, 400 H, 600 H, 800 H for testing under stresses equal to 0% (stress-free state), 30%, 50% and 70% of the ultimate strength was applied on the GFRP specimens. From the values of bending stress, obtained from three-point bending test, fracture energy, failure time, and life curve were analysed. Moreover, a normalized strength degradation model for this condition was also developed. It was observed that within 100 H, the decline rate of the bending strength was proportional to the pressure.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Design Improvement of Composite Door Section Impact Beam by Three-Point Bending Analysis (3점 굽힘 하중 해석을 통한 복합재 도어 임팩트 빔 단면형상 설계개선)

  • Ha, Jung-Chan;Oh, Sung Ha;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2020
  • The currently observed trend in car manufacturing is to increase energy-efficiency by producing lighter cars. This study examines the replacement of particular parts, specifically around the impact beam, with material composites 30% lighter than conventional steel currently used. The shape of the impact beam was determined as the trapezoidal cross-sectional area with central reinforcement, using three-point bending analysis. A prototype was fabricated based on the findings of our study and its performance was evaluated by the three-point bending analysis; 2 ply of aramid applied for its displacement. The performance of the final prototype for the door assembly was evaluated using a side-door strength test, which resulted to measured initial strength of 10.5 KN and intermediate strength of 15.6 KN. This research provides a promising solution for better impact beam manufacturing.

Load Capability in a Bending Piezoelectric Composite Actuator with a Thin Sandwiched PZT Plate (굽힘 압전 복합재료 작동기의 하중 특성)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.880-888
    • /
    • 2007
  • This article describes the load capability of bending piezoelectric actuators with a thin sandwiched PZT plate in association with the stored elastic energy induced by an increased dome height after a curing process. The stored elastic energy within the actuators is obtained via a flexural mechanical bending test. The load capability is evaluated indirectly in terms of an actuating displacement with a load of mass at simply supported and fixed-free boundary conditions. Additionally, a free displacement under no load of mass is measured for a comparison with an actuating displacement. The results reveal that an actuator with a top layer having a high elastic modulus and a low coefficient of thermal expansion exhibits a better performance than the rest of actuators in terms of free displacement as well as actuating displacement due to the formation of the large stored elastic energy within the actuator system. When actuators are excited at AC voltage, the actuating displacement is rather higher than the free displacement for the same actuating conditions. In addition, the effect of PZT ceramic softening results in a slight reduction in the resonance frequency of each actuator as the applied electric field increases. It is thus suggested that the static and dynamic actuating characteristics of bending piezoelectric composite actuators with a thin sandwiched PZT plate should be simultaneously considered in controlling the performance.

Evaluation Method of Self-healing Performance of Cement Composites (시멘트 복합체의 자기치유 성능평가 방법)

  • Lee, Kwang-Myong;Kim, Hyung-Suk;Min, Kyung-Sung;Choi, Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.134-142
    • /
    • 2020
  • In this study, in order to evaluate the self-healing performance of cement composites the self-healing test method and the analysis method were suggested by applying constant water head permeability test, chloride migration test and repeated bending test. The method of making a cracked specimen and controlling crack width are also proposed. Constant head water permeability test can evaluate the healing performance by using the decreasing rate of water flow passing through the crack zone of a specimen. Furthermore, the equivalent crack width can be used to intuitively investigate the healing effect with healing period. The chloride migration test can evaluate the healing rate by the decreasing rate of the diffusion coefficient obtained by ASTM C 1202. Mechanical healing performance can be evaluated using ISR and IDR estimated from load vs. CMOD relationship graph obtained through the repeated bending test. Finally, the applicability of proposed self-healing evaluation methods was examined by testing mortar specimens with or without self-healing agents.

Performance Test of Corner Rigid Joint for Modular Structure using Channel and Coupler (채널과 커플러를 사용한 모듈식 구조체 우각부 연결구조의 성능검증 실험)

  • Lee, Jun-Kyoung;Lee, Jong-Soon;Lee, Sung-Hyung;Kim, Hee-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2255-2262
    • /
    • 2015
  • Recent study about near-surface is proposed to overcome non-economic of underground railway and to reduce people's complaints of ground elevated railway. In this report, precast modular structure system replacing temporary facilities is applied to ensure the construction ability and economic feasibility. To verify the performance of connection joint between permanent structural wall and upper slab, loading test is carried out. As a result of the test, wall replacing temporary structure to slab connection is possible to transfer bending moment. By 30% increase of bending resistant performance for connection joint using coupler, coupler connection joint is more advantageous to resist bending moment compared to channel connection.