• Title/Summary/Keyword: Bending Moment

Search Result 1,329, Processing Time 0.029 seconds

Development of a Pure Bending Test Machine and Bending Collapse Characteristics of Rectangular Tubes (순수굽힘 시험기개발 및 사각관부재의 굽힘붕괴특성 연구)

  • 강신유;장인배;김헌영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.222-233
    • /
    • 1998
  • A 4-point pure bending res machine is developed the evaluate the pure vending moment-rotation properties of the thin-walled tubes without imposing shear and tensile forces. The moment-rotation properties of the thin-walled tubes are measured up to and beyond collapse with the pure bending test machine. The test results are compared with those of finite element analyses and existing analytical solution.

  • PDF

A Study on the Longitudinal Strength of the Ship Hull(I) (선체 종강도에 관한 연구(I))

  • 고윤섭
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.2
    • /
    • pp.43-50
    • /
    • 1984
  • When the static load is applied to the ship's hull the deflection due to the bending moment from longitudinal direction has not been considered in the usual calculation of maximum bending moment. In fact, however, the deflection of ship's hull must be affected by the above-stated bending moment, and in this case the value of the maximum bending moment would be lessened in comparision with the result of usual calculation. In this paper, the author at first calculated the difference between the two values in case of rectangular barge, and suggested a practical criterion of longitudinal strength.

  • PDF

A Study on the Specific Equation of Bending Collapse for Extruded Aluminum Members (알루미늄 압출부재의 굽힘붕괴 특성식 산출에 관한 연구)

  • Kang, Shin-Yoo;Jang, Hye-Jeong
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.131-138
    • /
    • 2000
  • In this paper, we would like to develop the bending collapse specific equation of aluminum members which are usually used in light-weight vehicle or electromobiles. The result of the developed equation are compared with that of test and finite element methods as the moment-rotational angle curves. Three types of aluminum members are tested with the pure bending collapse test rig. PAM-CRASH and ABAQUS program are used for finite element analysis. As the result the developed bending collapse governing equation is accurate in estimating the yield moment and the maximum moment. Especially, in the case of the local buckling and the delayed buckling, the developed equation is better effective than F.E.M.

  • PDF

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Analytical Studies on The Useful Characters Affecting The Lodging Resistance of Wheat and Barley Varieties (맥류의 도복에 관여하는 유용형질의 분석에 관한 연구)

  • Chang-Hwan Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.11
    • /
    • pp.105-117
    • /
    • 1972
  • This experiment has been made to study the relationship between several characters affecting the field lodging and to establish some useful standards for selection of lodging resistant varieties and to classify the degree of lodging resistance in wheat and barley varieties of different sources. The experiment was carried at the Crop Experiment Station, Suwon in 1968. The results obtained are summarized as followings. a. The lodging index modified with bending moment of culm at breaking seemed to be the most useful character in checking the lodging resistance. Highly significant positive correlation (Barley; r=0.40-0.67, Wheat; r=0.46-0.68) was obtained between the lodging index and actual field lodging. b. Between two essential components expressing bending stiffness of the culm, the bending moment at breaking and secondary moment of inertia, a highly significant positive correlation (Barley; r=0.59, wheat; r=0.46-0.53) was observed. c. The bending stiffness of culm got stronger as the dry weight per unit culm, which express the quantity of accumulated dry matters in culm, increased. The correlation coefficient between those two factors was 0.35 to 0.40 in barley and 0.33 to 0.76 in wheat respectively. d. In both wheat and barley, highly significant negative correlation between lodging index and the other factors such as dry weight per unit culm (Barley; r=-0. 51 to -0.70, Wheat; r=-0.65 to -0.83) and bending moment of culm at breaking (Barley; r=-0.29 to -0.69, Wheat: r=-0.54 to -0.89) were observed. Particulary, weight of culm at breaking, secondary moment of inertia and section modulus showed significant negative correlation with lodging index in wheat. e. Outside diameter of culm expressed more intimate relationship with physical characteristics of culm than inside diameter and also showed highly significant correlation with weight of culm at breaking (Barley; r=0.42-0.56, Wheat; r=0.39-0.44) and with bending moment of culm at breaking (Barley; r=0.40-0.41, Wheat; r=0.38-0.49) and with secondary moment of inertia (Barley; r=0.56-0.57, Wheat; r=0.28-0.98) and with section modulus (Wheat; r=0.22-0.96). Between the thickness of culm and physical characteristics of culm also showed the positive correlation. f. There was positive correlation between the culm length and actual field lodging in several groups of variety among the varieties tested. But the culm length seemed to undesirable as a selection measure for the selection of the lodging resistant variety considering the stiffness of culm. g. In classification of lodging resistance for the varieties tested, many Korean barley varieties expressed excellent lodging resistant than wheat, but most of the wheat and barley varieties from Japan considered quite resistant to lodging. h. In selection of lodging resistant varieties, lodging index lower than 1.67 in barley and 1. 76 in wheat considered highly resistant to actual field lodging.

  • PDF

The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment (반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.

Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending (In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.