• Title/Summary/Keyword: Bending Angle

Search Result 644, Processing Time 0.037 seconds

Out-Of-Plane Bending Stiffnesses in Offshore Mooring Chain Links Based on Conventional and Advanced Numerical Simulation Techniques (기존/개선 수치 해석 기법을 이용한 계류 체인 링크의 면외 굽힘 강성)

  • Choung, Joonmo;Lee, Jae-bin;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.297-309
    • /
    • 2018
  • After an accident involving mooring link failures in an offloading buoy, verification of the fatigue safety in terms of the out-of-plane bending (OPB) and in-plane bending (IPB) moments has become a key engineering item in the design of various floating offshore units. The mooring links for an 8 MW floating offshore wind turbine were selected for this study. To identify the OPB stiffness (OPB moment versus interlink angle), a numerical simulation model, called the 3-link model, is usually composed of three successive chain links closest to the fairlead or chain hawse. This paper introduces two numerical simulation techniques for the 3-link analyses. The conventional and advanced approaches are both based on the prescribed rotation approach (PRA) and direct tension approach (DTA). Comparisons of the nominal stress distributions, OPB stiffnesses, hotspot stress curves, and stress concentration curves are presented. The multiple link analyses used to identify the tension angle versus interlink angle require the OPB stiffness data from the 3-link analyses. A convergence study was conducted to determine the minimum number of links for a multi-link analysis. It was proven that 10 links were sufficient for the multi-link analysis. The tension angle versus interlink angle relations are presented based on multi-link analyses with 10 links. It was found that the subsequent results varied significantly according to the 3-link analysis techniques.

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • Lee Ho-Jung;Chun Keyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.162-169
    • /
    • 2005
  • The functional external fixator system fur bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for the bone deformity. The FE model using the compressive and bending FE analysis was applied to the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm; the bending stiffness value in experiment was 259.74N/mm; compressive stiffness value in FEM was 188.67N/mm; bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • 전경진;이호중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1248-1251
    • /
    • 2004
  • The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

  • PDF

A Study on the Deformation Characteristics of Gas Pipeline under Internal Pressure and In-Plane Bending Load (내압과 굽힘하중을 받는 가스배관의 변형특성에 관한 연구)

  • Jang, Yun-Chan;Kim, Ik-Joong;Kim, Cheol-Man;Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Young-Pyo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.50-57
    • /
    • 2019
  • This paper investigates deformation characteristics of gas pipeline using the in-plane bending experiment and finite element analysis of a pipe bend. The effect of the bending angle and internal pressure on the deformation characteristics is analyzed. The pipe bend used in this study is API 5L X65 (out diameter: 20 inch) material with the thickness of 11.9 mm. The maximum load, displacement at maximum load, angle and local strain of 90° pipe bend are obtained from the in-plane bending experiment. Comparison between FE results and experimental data shows overall good agreements. In addition, the deformation characteristics of 22.5° and 45° pipe bend are calculated using the finite element analysis. As a result, the effect of the bend angle on the deformation characteristics is discussed.

Manufacturing 2DOF Inflatable Joint Actuator by Pneumatic Control (공압제어를 통한 2DOF 팽창식 관절 액추에이터 제작)

  • Oh, Namsoo;Lee, Haneol;Rodrigue, Hugo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.92-96
    • /
    • 2018
  • In this paper, a soft robotic arm which can prevent impact injury during human-robot interaction is introduced. Two degrees of freedom joint are required to realize free movement of the robotic arm. A robotic joint concept with a single degree of freedom is presented using simple inflatable elements, and then extended to form a robotic joint with two degrees of freedom joint using similar manufacturing methods. The robotic joint with a single degree of freedom has a joint angle of $0^{\circ}$ bending angle when both chamber are inflated at equal pressures and maximum bending angles of $28.4^{\circ}$ and $27.1^{\circ}$ when a single chamber if inflated. The robotic joint with two degrees of freedom also has a bending angle of $0^{\circ}$ in both direction when all three chambers are inflated at equal pressures. When either one or two chambers were pressurized, the robotic joint performed bending towards the uninflated chambers.

Effect of Bending Angle and Embedment Length on the Bond Characteristics of V-shaped Tie Reinforcement (절곡각 및 묻힘길이에 따른 V형 띠철근의 부착특성)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.465-471
    • /
    • 2015
  • This study proposed V-shaped tie bar method as an alternative of internal cross-tie for reinforced concrete columns in order to enhance the constructability and confinement effectiveness of the lateral tie bars. A total of 35 pull-out specimens were prepared with the parameters of concrete compressive strength and bending angle and embedment length of the V-shaped bar to examine the bond stress-slip relationship of the V-shaped tie bar. The bond strength of the V-shaped tie bars with the bending angle not exceeding $60^{\circ}$ was higher than the predictions obtained from the equations of CEB-FIP provision. Considering the constructability and bond behavior of the V-shpaed tie bar, the bending angle and embedment length of such bar can be optimally recommended as $45^{\circ}$ and 6db, respectively, where db is the diameter of the tie bar.

Shape Factor Analysis of Fresh Red Pepper Affecting the Performance of Unfolding, Arranging and Cutting (전개 .정렬 . 절단 성능에 영향을 미치는 홍고추 형상 요인 분석)

  • 나우정;이승규;송대빈;김영복;이태곤
    • Journal of Biosystems Engineering
    • /
    • v.26 no.6
    • /
    • pp.563-570
    • /
    • 2001
  • To develop a stalk detaching system the effect of shape factor of red pepper affecting the performance of unfolding, arranging and cutting was analysed. The obtained results are as follows : By cutting experiment, it was found that the bending of stalk affected the cutting rate of stalk, and that the bending of body increased the amount of peppers that were expelled from the cutting guide by conveying brush. The ratios, 'bending length of a body/body length'and 'bending length of a stalk/stalk length', could be used as criteria far abnormality of body and stalk of peppers, respectively. As a result of experiment, it was concluded that mechanical treatment would be difficult for the peppers with indexes greater than 0.4 and 0.3 fur body bending and stack bending. respectively. So, these indexes were used as criteria for distinguishing abnormality from normality of peppers. In the unfolding unit, conveyance of peppers was impossible for both of normal and abnormal ones at the inclination angle of 10°, especially, at the frequency of 8.3 Hz peppers maintained stationary state. At the inclination angle of 20°, both of normal and abnormal peppers showed similar tendencies, but abnormal ones showed an accumulation trend gradually with increased feeding speed. In the arranging unit, conveyance of peppers was almost impossible for both of normal and abnormal ones at the inclination angle of 20°, showing almost no difference between the conveyances of normal and abnormal ones. In the case of the inclination angle of 30°, at the condition of the feeding speeds and frequency corresponding 0.06 m/s, 0.08 m/s and 8.3 Hz, respectively, the passing time of the abnormal peppers on the arranging plate increased rapidly.

  • PDF

A Study on the Servo Control of Bending Machine (Bending Machine의 서보제어에 관한 연구)

  • 송충현;김성식;김경석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.410-413
    • /
    • 1997
  • Recent general press brake has many problems in cutting high accurate products in the progress of industry. Previous hand-operated press brake needs many pre-processing works to adjust bending angle and marking-off works to calculate bending length. Also, The hand-operating work makes many geometric errors and has difficulty for variety-mass production. To solve these problems, this paper proposes Computer Numerical Control (CNC) general press brake and development of servo-control system based on database for reduction of geometric errors and pre-processing work time.

  • PDF

An Anlaysis of the Twisting and the Bending of Extruded-products with the Two shapes of the Extrusion Die land (압출다이의 랜드부 형상에 따른 압출제품의 비틀림과 굽힘 현상 해석)

  • 박대윤;진철호;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.254-257
    • /
    • 1998
  • The twisting and the bending of extruded product are caused by the shapes of products and by the shapes of die surfaces and by the shapes of die land. Because the elliptical shape and the circular shape of the extruded product have the symmetry line of cross-section area, the twisting and the bending of product has not occurred. But the analysis by the DEFORM-3DTM show that the twisting and the bending of extruded product can be occurred by the twisting of the twisting of the die land and by the curving of the die land. The results by the analysis show that the twisting angle of the extruded procduct increases by the twisting angle of the die land and the curvature of the extruded products increases by the radius of bending of the die land.

  • PDF