• 제목/요약/키워드: Bending

검색결과 8,727건 처리시간 0.028초

굽힘하중에 대한 퇴행성 추간판의 생체역학적 특성 분석 (Biomechanical Behaviors of Disc Degeneration on Bending Loads)

  • 이현옥;이성재;신정욱
    • The Journal of Korean Physical Therapy
    • /
    • 제13권1호
    • /
    • pp.1-18
    • /
    • 2001
  • Aging has been recognized as the primary cause of disc degeneration. A biomechanical characteristics of disc degeneration has been demonstrated that intradiscal pressure is reduced. With the increasing population of elderly people, disc degeneration and associated problems of nerve entrapment are becoming more prevalent. Presently, research on reduced intradiscal pressure associated with degeneration is insufficient. In this study. we used the Finite Element Method (FEM) of computerized simulations to investigate the effects of variation in intradiscal pressure on mechanical behaviours of L4-5 intervertebral disc degeneration. Degeneration was classified using four grades based on initial intradiscal pressure; Normal (135 kPa), mild(107 kPa), moderate (47 kPa) and severe (15 kPa). The predicted results f3r bending loads were as follows; 1 . Range of motion increased progressively with severity of degeneration with flexion and lateral bending moments, but decreased with extension moments. 2. Discal bulging of posterolateral aspect was larger in lateral bending and extension moment. But bulging was increased with severity of degeneration in lateral bending and torsion(same side).3. The rate of increasing intradiscal pressure was decreased in all bending motions with severity of degeneration. In conclusion, lateral bending and extension moment yield greatest bulging in severe degeneration. In torsion, although bending load produces disc bulging, disc bulging was associated more strongly with severity of degeneration than increasing torsional moments. Clinical Implications: Discal bulging may produce nerve root impingement and irritation. The effect of loading and posture on the varying degrees of disc degeneration has important implications especially in the elderly. In the presence of disc degeneration, avoidance of end range postures, especially extension and lateral bending may help reduce discal bulging and in turn, nerve entrapment.

  • PDF

양버즘나무의 소재(素材) 및 집성곡목제조(集成曲木製造)에 관(關)한 연구(硏究)(I) - 증자(蒸煮)에 의한 소재(素材)휨가공성(加工性) - (Study on the Solid and Laminated Wood Bending of Platanus occidentalis L.(I) - Solid Wood-bending Properties by Steaming -)

  • 소원택;정희석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.26-40
    • /
    • 1990
  • The plane trees(Platanus occidentalis L.) have been grown in Korea very widely as ornamental garden or street trees but they have not been used as manufacturing materials The proportion of imported wood has been now over 85% of raw materials needed in the wood industry, and therefore, many of studies on the substitution of domestic wood for imported wood and on the increasing the utilization rate of domestic species have been attempted and considered as very important projects to solve. From a this point of view, this study was carried out to investigate solid wood bending properties of plane trees and then to develop their end-uses, and the size of specimens tested was $15\times15\times350mm$ for steaming treatment and they were dried to $15\pm1%$ before bending. The results obtained were as follows: 1. The optimum conditions for solid wood bending processing of Platanus occidentalis are showed in Table 7. 2. The minimum solid-bending radii of Platanus occidentalis were 40mm in steaming treatment. 3. The effect of knots, diagonal grain and decay on the degradation of bending processing properties were very severe. 4. The bending stress was setted successfully through $80^{\circ}C$-15hrs drying after bending and the spring back for 24hr-exposing time was only about 1%.

  • PDF

Dimensional Stability and Bending Properties of Small Diameter Log Treated by Sap-displacement Method

  • Lee, Jun-Jae;Koo, Ja-Il;Chun, Su-Kyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.61-71
    • /
    • 2000
  • The effect of the treatment with CCFZ, FR-4, and PEG400 from butt end on the dimensional stability and bending properties was examined. Three softwood species such as red pine, Korean white pine and Japanese larch and three hardwood species such as poplar, alder and oak were investigated in this research. Shrinkage of red pine, Korean white pine, poplar, and alder treated with PEG400 decreased. However, there was no significant decrease of shrinkage in Japanese larch and oak. The decrease of shrinkage when moisture content changed from about 20% to 10% was larger than that at any other phase. In regard to the effect of treatment on bending properties, bending MOE and MOR of all specimens treated with PEG400 decreased significantly. Especially in the case of red pine, poplar, and alder treated with PEG400, bending MOR reduced 9%, 14%, and 12%, respectively. Reductions of MOR of the hardwood was also much larger than that of the softwood. However, in all species, treatment with CCFZ and FR-4 did not affect the change of bending MOE and MOR significantly. Comparing the large specimen which also included heartwood with the small specimen which included only treated sapwood, there was a difference in the change of bending MOE and MOR between them. The large specimens of Korean white pine, alder and Poplar, which had a relatively low proportion of sapwood(18~22%), showed the decrease of MOR by 11~13% more than that of small specimens, while red pine, Japanese larch and oak, which had a relatively high proportion of sapwood(35~40%), showed little decrease. It means that bending MOE and MOR of structural wood treated from butt end should be considered in terms of sapwood proportion as well as effect of treated chemicals.

  • PDF

플라스틱 온실의 강관 이음부 휨성능 분석 (Evaluation of Steel-Pipe Connections in Plastic Greenhouse Using Bending Test)

  • 최만권;류희룡;조명환;유인호
    • 생물환경조절학회지
    • /
    • 제27권4호
    • /
    • pp.391-399
    • /
    • 2018
  • 본 연구에서는 현장에서 사용되는 온실 강관의 이음 방법에 대해 휨성능을 평가하고 그 결과를 바탕으로 가장 휨성능이 우수한 이음 방법을 알아보았다. 실험 결과, 모든 실험체는 이음이 없는 실험체 보다 휨성능이 작았다. 그러나 모든 실험체의 최대 휨모멘트는 이음이 없는 실험체 소성모멘트의 1.07~1.3정도로 나타났다. 또한 연결방법에 따른 결과는 연결핀 보다 인발 실험체가 상대적으로 큰 휨성능을 보였다. 현장 이음 방법의 파괴 모드는 연결핀과 강관 끝부분의 응력집중에 의한 국부좌굴이 지배적이었다. 현장시공 시 강관을 절단 후 연결할 경우, 이음 없이 사용하는 것이 가장 우수한 휨성능을 발휘하지만 부득이 강관을 절단할 경우는 연결핀보다는 인발 강관에 직결나사로 고정한 이음 방법(SPJ-F)으로 시공하는 것이 유리할 것으로 판단된다.

즉각적인 뒤넙다리근 편심성 운동과 정적 스트레칭이 몸통 전방 굽힘에 미치는 영향 (The Immediate Effects of Hamstring Eccentric Exercise and Static Stretching on Trunk Forward Bending)

  • 김태은;최보람
    • 한국전문물리치료학회지
    • /
    • 제26권3호
    • /
    • pp.32-41
    • /
    • 2019
  • Background: Limitations in hip flexion caused by tight hamstrings lead to excessive lumbar flexion and low back pain. Accordingly, many studies have examined how to stretch the hamstring muscle. However, no study has focused on the effect of hamstring eccentric exercise for tight hamstrings on trunk forward bending. Objects: We compared the short-term effect of hamstring eccentric exercise (HEE) and hamstring static stretching (HSS) on trunk forward bending in individuals with tight hamstrings. Methods: Thirty individuals with tight hamstrings participated in the study. The subjects were randomly allocated to either a HEE or HSS group. To determine whether the hamstrings were tight, the active knee extension (AKE) test was performed, and the degree of hip flexion was measured. To assess trunk forward bending, subjects performed the fingertip to floor (FTF) and modified modified Schober tests, and the degree of trunk forward bending was measured using an inclinometer. We used paired t-tests to compare the values before and after exercise in each group and independent t-tests to compare the two groups on various measures Results: The FTF test results were improved significantly after the exercise in both groups, and AKE for both legs increased significantly in both groups. There was no significant difference in the hip angles, mmS test results, or degree of trunk forward bending between groups after the exercise. No test results differed significantly between the two groups at baseline or after the exercise. Both groups increased hamstring flexibility and trunk forward bending. Conclusion: HSS and the HEE groups increased hamstring flexibility and trunk forward bending. However, HEE has additional benefits, such as injury prevention and muscle strengthening.

노년여성(老年女性) 숙인체형(體型)의 저고리 원형(原型)에 관(關)한 연구(硏究) (A Study on the Pattern of Hanbok Jegory for Bending Somatotyped Women in Old Age)

  • 남윤자;한승희
    • 패션비즈니스
    • /
    • 제8권4호
    • /
    • pp.22-32
    • /
    • 2004
  • The purpose of this research is to know the pattern of Hanbok Jegory with measuring Jegory and studying manufacturing method of the Jegory used currently. It is a purpose to find constitutional problem caused by the character of the bending somatotype and, to study the standard model of the Jegory for bending somatotyped women in old age, by comparison of this fitness for bending-somatotyped women in old age. The results obtained are as follows; 1. The kinds of measurements considered in manufacturing process are Hwajang Length, Bust girth, and the skirt length. The length of Jegory and width of Neck are also considered. 2. Manufacturers consider somatotype the most important thing when they make Jegory for women in old age. Front length, Back length and Width of the Jegory are considered secondly important. 3. The results of the comparison show that the Standard Hanbok drafting method is not suitable for drafting Jegory for bending somatotyped women in old age. 4. The suitability test for the model designed by the above methods shows that it fits in bending somatotyped women in old age better than standard drafting method. The results show the superiority of the above methods especially in the breast width, the Godae length, and the adaptedness to the body.

훨타워 시험 수행을 위한 무힌지 블레이드 플렉셔 굽힘 강성 보강 (Hingeless Blade Flexure Bending Stiffness Reinforcement for Whirl Tower Test)

  • 김태주;기영중
    • 한국항공우주학회지
    • /
    • 제42권5호
    • /
    • pp.390-397
    • /
    • 2014
  • BO-105 헬리콥터는 무힌지 로터 허브시스템이 적용되었으며, 블레이드의 루트 영역이 무힌지 허브 시스템의 플렉셔에 해당한다. 따라서 본 블레이드를 이용한 훨타워 시험 수행을 대비하여 굽힘 강성이 낮은 플렉셔 부분에 대한 굽힘 강성 보강을 수행하였다. 플렉셔 굽힘 강성 보강 수행을 위해 플렉셔 부분의 단면 형상을 모델링하여 굽힘 강성을 계산하였으며, 이를 바탕으로 강성 보강을 위한 복합재의 두께를 선정하였다. 보강된 플렉셔의 실제 굽힘 강성을 확인하기 위하여 강성보강 전 형상에 대한 강성 측정 시험과 강성보강 이후 형상에 대한 강성 측정 시험을 수행하여 결과를 비교하였다.

고속 회전 터보 기기용 포일 베어링의 불안정 진동 제진에 관한 연구 (A Study on the Suppression of Instability Whirl of a Foil Bearing for High-Speed Turbomachinery beyond the Bending Critical Speed)

  • 이용복;김태호;김창호;이남수;최동훈
    • 한국유체기계학회 논문집
    • /
    • 제5권3호
    • /
    • pp.7-14
    • /
    • 2002
  • A new foil bearing, ViscoElastic Foil Bearing(VEFB) is suggested with the need for a high damping foil bearing. Sufficient damping capacity is a key technical hurdle to super-bending-critical operation as well as widespread use of foil bearings into turbomachinery. The super-bending-critical operation of the conventional bump foil bearing and the VEFB is examined, as well as the structural dynamic characteristics. The structural dynamic test results show that the equivalent viscous damping of the VEFB is much larger than that of the bump bearing, and that the structural dynamic stiffness of the VEFB is comparable or larger than that of the bump bearing. The results of super-bending-critical operation of the VEFB indicate that the enhanced structural damping of the viscoelastic foil dramatically reduces the vibration near the bending critical speed. With the help of increased damping resulting from the viscoelasticity, the suppression of the asynchronous orbit is possible beyond the bending critical speed.

플렉시블 디스플레이에서 ITO층의 파괴 특성을 고려한 설계연구 (A Study on the Design of Flexible Display Considering the Failure Characteristics of ITO Layer)

  • 김민규;박상백;채수원
    • 한국정밀공학회지
    • /
    • 제30권5호
    • /
    • pp.552-558
    • /
    • 2013
  • In recent years the interest on flexible display has been increasing as a future display due to its bendable characteristics. An ITO(indium tin oxide) layer, which is part of a flexible display, can be broken easily while bending because it is made of brittle materials. This brittle property can cause the malfunction of flexible display. To analyze fracture characteristics of ITO layer, bending test was conducted commonly. However, it is not possible to know specific phenomena on bended ITO layer by simple bending test only. Accordingly, in this study, the FE(finite element) model is developed similarly to a real flexible display to analyze stress distribution of flexible display under bending condition, especially on ITO layer. To validate FE model, actual bending test was conducted and the test results were compared with the simulation results by measuring reaction forces during bending. By using the developed model, FE analysis about the effect of design parameter (Thickness & Young's Modulus of BL) on ITO Layer was performed. By explained FE analysis above, this research draws a conclusion of reliable design guide of flexible display, especially on ITO layer.

Mean moment effect on circular thin-walled tubes under cyclic bending

  • Chang, Kao-Hua;Pan, Wen-Fung;Lee, Kuo-Long
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.495-514
    • /
    • 2008
  • In this paper, experimental and theoretical investigations of the effect of the mean moment on the response and collapse of circular thin-walled tubes subjected to cyclic bending are discussed. To highlight the influence of the mean moment effect, three different moment ratios r (minimum moment/ maximum moment) of -1, -0.5 and 0, respectively, were experimentally investigated. It has been found that the moment-curvature loop gradually shrinks with the number of cycles, and becomes stable after a few cycles for symmetric cyclic bending (r = -1). However, the moment-curvature loop exhibits ratcheting and increases with the number of cycles for unsymmetric cyclic bending (r = -0.5 or 0). In addition, although the three groups of tested specimens had three different moment ratios, when plotted in a log-log scale, three parallel straight lines describe the relationship between the controlled moment range and the number of cycles necessary to produce buckling. Finally, the endochronic theory combined with the principle of virtual work was used to simulate the relationship among the moment, curvature and ovalization of thin-walled tubes under cyclic bending. An empirical formulation was proposed for simulating the relationship between the moment range and the number of cycles necessary to produce buckling for thin-walled tubes subjected to cyclic bending with different moment ratios. The results of the experimental investigation and the simulation are in good agreement with each other.