• 제목/요약/키워드: Benchmark Problem

검색결과 460건 처리시간 0.03초

One-node and two-node hybrid coarse-mesh finite difference algorithm for efficient pin-by-pin core calculation

  • Song, Seongho;Yu, Hwanyeal;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.327-339
    • /
    • 2018
  • This article presents a new global-local hybrid coarse-mesh finite difference (HCMFD) method for efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)-based two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems with boundary conditions of incoming partial current, and they can be solved in parallel. The global problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method. We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD algorithm was also parallelized with the OpenMP parallel interface, and its numerical performances were evaluated for several benchmarks.

Gas-liquid interface treatment in underwater explosion problem using moving least squares-smoothed particle hydrodynamics

  • Hashimoto, Gaku;Noguchi, Hirohisa
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.251-278
    • /
    • 2008
  • In this study, we investigate the discontinuous-derivative treatment at the gas-liquid interface in underwater explosion (UNDEX) problems by using the Moving Least Squares-Smoothed Particle Hydrodynamics (MLS-SPH) method, which is known as one of the particle methods suitable for problems where large deformation and inhomogeneity occur in the whole domain. Because the numerical oscillation of pressure arises from derivative discontinuity in the UNDEX analysis using the standard SPH method, the MLS shape function with Discontinuous-derivative Basis Function (DBF) that is able to represent the derivative discontinuity of field function is utilized in the MLS-SPH formulation in order to suppress the nonphysical pressure oscillation. The effectiveness of the MLS-SPH with DBF is demonstrated in comparison with the standard SPH and conventional MLS-SPH though a shock tube problem and benchmark standard problems of UNDEX of a trinitrotoluene (TNT) charge.

효율적인 Partial Scan 설계 알고리듬 (An Efficient Algorithm for Partial Scan Designs)

  • 김윤홍;신재흥
    • 전기학회논문지P
    • /
    • 제53권4호
    • /
    • pp.210-215
    • /
    • 2004
  • This paper proposes an implicit method for computing the minimum cost feedback vertex set for a graph. For an arbitrary graph, a Boolean function is derived, whose satisfying assignments directly correspond to feedback vertex sets of the graph. Importantly, cycles in the graph are never explicitly enumerated, but rather, are captured implicitly in this Boolean function. This function is then used to determine the minimum cost feedback vertex set. Even though computing the minimum cost satisfying assignment for a Boolean function remains an NP-hard problem, it is possible to exploit the advances made in the area of Boolean function representation in logic synthesis to tackle this problem efficiently in practice for even reasonably large sized graphs. The algorithm has obvious application in flip-flop selection for partial scan. The algorithm proposed in this paper is the first to obtain the MFVS solutions for many benchmark circuits.

대체기계와 공정순서를 고려한 Job Shop에서의 통합 일정계획 (Integrated Job Shop Scheduling considering Alternative Machines and Operation Sequence)

  • 최형림;박병주;박용성;강무홍
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.85-88
    • /
    • 2003
  • In case that any jobs in a Job Shop can be scheduled on more than one machine and may have flexible operation sequences, with considering such case it is very difficult and complex to make the optimal process plans and scheduling. But they should be considered for an integrated model to perform more effective process planning and scheduling in this job shop problem. In this paper, we propose GA-based scheduling method to integrate effectively the problem of alternative machines, alternative operation sequences and scheduling. The performance of proposed GA is evaluated through comparing integrated scheduling with not integrated scheduling in molding company with alternative machines and operation sequences. Also, we use benchmark problems to evaluate performance. The scheduling method in this research will apply usefully to real world scheduling problems.

  • PDF

유전알고리즘에 기반한 Job Shop 일정계획 기법 (A Genetic Algorithm-based Scheduling Method for Job Shop Scheduling Problem)

  • 박병주;최형림;김현수
    • 경영과학
    • /
    • 제20권1호
    • /
    • pp.51-64
    • /
    • 2003
  • The JSSP (Job Shop Scheduling Problem) Is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. we design scheduling method based on SGA (Single Genetic Algorithm) and PGA (Parallel Genetic Algorithm). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling method based on genetic algorithm are tested on five standard benchmark JSSPs. The results were compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement at a solution. The superior results indicate the successful Incorporation of generating method of initial population into the genetic operators.

COMPARISON OF NUMERICAL SCHEMES ON MULTI-DIMENSIONAL BLACK-SCHOLES EQUATIONS

  • Jo, Joonglee;Kim, Yongsik
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.2035-2051
    • /
    • 2013
  • In this paper, we study numerical schemes for solving multi-dimensional option pricing problem. We compare the direct solving method and the Operator Splitting Method(OSM) by using finite difference approximations. By varying parameters of the Black-Scholes equations for the maximum on the call option problem, we observed that there is no significant difference between the two methods on the convergence criterion except a huge difference in computation cost. Therefore, the two methods are compatible in practice and one can improve the time efficiency by combining the OSM with parallel computation technique. We show numerical examples including the Equity-Linked Security(ELS) pricing based on either two assets or three assets by using the OSM with the Monte-Carlo Simulation as the benchmark.

PCA Based Fault Diagnosis for the Actuator Process

  • Lee, Chang Jun
    • International Journal of Safety
    • /
    • 제11권2호
    • /
    • pp.22-25
    • /
    • 2012
  • This paper deals with the problem of fault diagnosis for identifying a single fault when the number of assumed faults is larger than that of predictive variables. Principal component analysis (PCA) is employed to isolate and identify a single fault. PCA is a method to extract important information as reducing the number of large dimension in a process. The patterns of all assumed faults can be recognized by PCA and these can be employed whether a new fault is one of predefined faults or not. Through PCA, empirical models for analyzing patterns can be trained. When a single fault occurs, the pattern generated by PCA can be obtained and this is used to identify a fault. The performance of the proposed approach is illustrated in the actuator benchmark problem.

회로 분할법에 의한 정확한 논리 시뮬레이션 (Accurate Logic Simulation Using Partitioning)

  • 오상호
    • 한국시뮬레이션학회논문지
    • /
    • 제5권2호
    • /
    • pp.73-84
    • /
    • 1996
  • 회로의 크기가 점점 방대해지고 복잡해짐에 따라 설계검증을 위해 시뮬레이션은 매우 중요한 역할을 하고 있으며 빠른 속도와 정확성이 요구 되어지고 있다. 좋은 시뮬레이터는 실제회로에서 출력되는 정확한 값을 예상할 수 있어야 하지만 3논리값 시뮬레이션에서는 X값 전파(unknown propagation)문제를 발생시켜 출력의 정확도를 떨어뜨리게 된다. 본 논문은 X값 전파 문제를 효과적으로 다루기 위해 분할기법을 사용했으며 분할의 깊이를 선택적으로 조절하는 효율적인 알고리즘을 개발하였고, 이를 토대로 미지값을 쉽고 빠르게 처리하는 시뮬레이터를 개발하였다. 그리고 벤치마크회로를 이용하여 새로 개발한 알고리즘과 시뮬레이터의 효율을 입증하였다.

  • PDF

이차원 트랙 할당에 의한 FPGA 상세 배선 (A detailed FPGA routing by 2-D track assignment)

  • 이정주;임종석
    • 전자공학회논문지C
    • /
    • 제34C권10호
    • /
    • pp.8-18
    • /
    • 1997
  • In FPGAs, we may use the property of the routing architecture for their routing compared to the routing in the conventional layout style. Especially, the Xilinx XC4000 series FPGAs have very special routing architecture in which the routing problem is equivalent to the two dimensional track assignment problem. In this paper, we propose a new FPgA detailed routing method by developing a two dimensional trackassigment heuristic algorithm. The proposed routing mehtod accept a global routing result as an input and obtain a detailed routing such that the number of necessary wire segments in each connection block is minimized. For all benchmark circuits tested, our routing methd complete routing results. The number of used tracks are also similar to the results by thedirect routing methods.

  • PDF

VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석 (Finite element analysis of flow with moving free surface by volume of fluid method)

  • 신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.