• Title/Summary/Keyword: Belite

Search Result 88, Processing Time 0.02 seconds

Quantitative Analysis of Rietveld Method Minerals by Sintering Temperature of Cement Clinkers with Fly Ash (리트벨트법에 의한 석탄재를 적용한 시멘트 클링커의 소성 온도별 광물 정량분석)

  • Yoo, Dong-Woo;Im, Young-Jin;Park, Tae-Gyun;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.514-519
    • /
    • 2020
  • In this study, cement clinkers were sintered at each temperature by replacing some of the clay components of cement clinkers with coal materials. The mineral phase change of sintered cement clinker was quantitatively analyzed by XRD-Rietveld method. As the sintering temperature of cement clinker increased, the amount of belite decreased, the amount of alite increased, and the amount of free-CaO decreased. The form of alite and belite could be distinguished at sintering temperature of 1450℃ or higher. The crystal size was greatly increased at 1500℃ sintering. It was confirmed that the excessive sintering was progressed. Free-CaO decreased with the increase of sintering temperature. At 1450 ℃ or higher, it was less than 0.5%. In 1450℃ or greater, it is determined that enough sintering is included. Therefore, the application of fly ash as a raw material of cement clinker was judged to be usable as a source of chemical components of alumina and iron raw materials.

Consideration of Cement Mineral Production Amount and Microstructure Chemical Distribution of Cement Clinker Using Coal Ash and Coarse Limestone (석탄재와 조립 석회석을 적용한 시멘트 클링커의 시멘트 광물생성량과 미세구조의 화학성분 분포 고찰)

  • Dong-Woo Yoo;Sung-Ku Kwon;Min-Seok Oh;Seok-Je Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.364-372
    • /
    • 2023
  • By applying coarse-grained limestone and unprocessed coal ash as sintering raw materials for cement clinker, the microstructure and distribution of chemical components of cement clinker were compared and examined. Samples using coarse limestone as a raw material for cement clinker showed a decrease in sinterability compared to samples using reagent-grade raw materials. Samples using coal ash showed a tendency for some increase in sinterability. In samples using coarse limestone and coal ash, the formation of Belite was high at 1350 ℃. The conversion rate from Belite to Alite was high in the range of 1350~1450 ℃. Samples using coal ash showed stable formation of interstitial phase in the range of 1350 to 1450 ℃. The microstructure and chemical composition distribution of cement clinker sintered at 1350~1450 ℃ showed that all samples showed a form and composition distribution in which the calcium silicate phase and interstitial phase were clearly distinguished.

Hydration of Active-Belite Cement with Gypsum and Slag (석고와 슬래그를 첨가한 Active-Belite Cement의 수화특성)

  • 이성호;박동철;김남호;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.330-330
    • /
    • 1998
  • Active belite cement clinkers were synthsized by using natural raw materials with borax and calcium phosphate ({{{{ {Ca }_{3 }( {PO}_{4}) }}2) In both case {{{{alpha ^、 {C }_{2 }S }} were formed but borax was more efficient. The cement syn-thesized with the addition of borax was hydrated with the addition of anhydrite(5 wt%) and slag(30wt%, 40wt% 50wt%) The addition of 50wt% slag with anhydrite was good for strength development in 7days and the compressive strength was developed to twice than no addition of slag at 28 days strength.

Study on Hydration Heat of Blended Belite Binder (벨라이트계 혼합 결합재의 수화열 특성에 관한 연구)

  • Lee, Kewn-Chu;Cho, Jae-Woo;Jung, Sang-Hwa;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Presently, mass concrete structures are being built in federal and private projects of civil infrastructures and building structures. The hydration heat of mass concrete structures is the most important factor in the quality of concrete matrix and construction period. Moreover, internal cracks caused by hydration heat degrades durability, water tightness, and strength of concrete. To reduce hydration heat, it is necessary to blend belite cement (${\beta}-C_2S$) with industrial by-products (i.e. granulated slag and fly ash). In this experiment, 14 levels of binary binders and 4 levels of ternary binders were used to understand the effect of different replacement ratio on hydration heat, strength and microstructure (i.e. SEM and XRD) of mortar. Cumulative hydration heat at 28 days for the binary and ternary binders was affected by replacement ratio of fly ash and/or granulated slag. As fly ash content increased, hydration heat decreased. As granulated slag content increased, reduction rate of the hydration heat was lower than when fly ash was used. Especially, the hydration heat of ternary binder blended with 40% flyash and 30% granulated slag showed about 50% of hydration heat from using belite cement (P). The study results showed that the temperature rise of concrete matrix can be decreased by using blended belite binders producing low hydration heat and reasonable strength.

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF