• Title/Summary/Keyword: Belief propagation

Search Result 96, Processing Time 0.022 seconds

Fast Stereo matching based on Plane-converging Belief Propagation using GPU (Plane-converging Belief Propagation을 이용한 고속 스테레오매칭)

  • Jung, Young-Han;Park, Eun-Soo;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.88-95
    • /
    • 2011
  • Stereo matching is the research area that regarding the estimation of the distance between objects and camera using different view points and it still needs lot of improvements in aspects of speed and accuracy. This paper presents a fast stereo matching algorithm based on plane-converging belief propagation that uses message passing convergence in hierarchical belief propagation. Also, stereo matching technique is developed using GPU and it is available for real-time applications. The error rate of proposed Plane-converging Belief Propagation algorithm is similar to the conventional Hierarchical Belief Propagation algorithm, while speed-up factor reaches 2.7 times.

Enhanced Belief Propagation Polar Decoder for Finite Lengths (유한한 길이에서 성능이 향상된 BP 극 복호기)

  • Iqbal, Shajeel;Choi, Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.45-51
    • /
    • 2015
  • In this paper, we discuss the belief propagation decoding algorithm for polar codes. The performance of Polar codes for shorter lengths is not satisfactory. Motivated by this, we propose a novel technique to improve its performance at short lengths. We showed that the probability of messages passed along the factor graph of polar codes, can be increased by multiplying the current message of nodes with their previous message. This is like a feedback path in which the present signal is updated by multiplying with its previous signal. Thus the experimental results show that performance of belief propagation polar decoder can be improved using this proposed technique. Simulation results in binary-input additive white Gaussian noise channel (BI-AWGNC) show that the proposed belief propagation polar decoder can provide significant gain of 2 dB over the original belief propagation polar decoder with code rate 0.5 and code length 128 at the bit error rate (BER) of $10^{-4}$.

Image Completion Using Hierarchical Priority Belief Propagation (Hierarchical Priority Belief Propagation 을 이용한 이미지 완성)

  • Kim, Moo-Sung;Kang, Hang-Bong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.256-261
    • /
    • 2007
  • 본 논문은 이미지 완성(Image Completion)을 위한 근사적 에너지 최적화 알고리즘을 제안한다. 이미지 완성이란 이미지의 특정영역이 지워진 상태에서, 그 지워진 부분을 나머지 부분과 시각적으로 어울리도록 완성시키는 기법을 말한다. 본 논문에서 이미지 완성은 유사-확률적(pseudo-probabilistic) 시스템인 Markov Random Field로 모델링된다. MRF로 모델링된 이미지 완성 시스템에서 사후 확률(posterior probability)을 최대로 만드는 MAP(Maximum A Posterior) 문제는 결국 시스템의 전체 에너지를 낮추는 에너지 최적화 문제와 동일하다. 본 논문에서는 MRF의 최적화 알고리즘들 중에서 Belief Propagation 알고리즘을 이용한다. BP 알고리즘이 이미지 완성 분야에 적용될 때 다음 두 가지가 계산시간을 증가시키는 요인이 된다. 첫 번째는 완성시킬 영역이 넓어 MRF를 구성하는 정점의 수가 증가할 때이다. 두 번째는 비교할 후보 이미지 조각의 수가 증가할 때이다. 기존에 제안된 Priority-Belief Propagation 알고리즘은 우선순위가 높은 정점부터 메시지를 전파하고 불필요한 후보 이미지 조각의 수를 제거함으로써 이를 해결하였다. 하지만 우선순위를 정점에 할당하기 위한 최초 메시지 전파의 경우 Belief Propagation의 단점은 그대로 남아있다. 이를 개선하기 위해 본 논문에서는 이미지 완성을 위한 MRF 모델을 피라미드 구조와 같이 층위로 나누어 정점의 수를 줄이고, 계층적으로 메시지를 전파하여 시스템의 적합성(fitness)을 정교화 해나가는 Hierarchical Priority Belief Propagation 알고리즘을 제안한다.

  • PDF

A New Image Completion Method Using Hierarchical Priority Belief Propagation Algorithm (계층적 우선순위 BP 알고리즘을 이용한 새로운 영상 완성 기법)

  • Kim, Moo-Sung;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • The purpose of this study is to present a new energy minimization method for image completion with hierarchical approach. The goal of image completion is to fill in missing part in a possibly large region of an image so that a visually plausible outcome is obtained. An exemplar-based Markov Random Field Modeling(MRF) is proposed in this paper. This model can deal with following problems; detection of global features, flexibility on environmental changes, reduction of computational cost, and generic extension to other related domains such as image inpainting. We use the Priority Belief Propagation(Priority-BP) which is a kind of Belief propagation(BP) algorithms for the optimization of MRF. We propose the hierarchical Priority-BP that reduces the number of nodes in MRF and to apply hierarchical propagation of messages for image completion. We show that our approach which uses hierarchical Priority-BP algorithm in image completion works well on a number of examples.

A Study on Fast Stereo Matching Algorithm using Belief Propagation in Multi-resolution Domain (다해상도 영역에서 신뢰확산 알고리즘을 사용한 고속의 스테레오 정합 알고리즘에 관한 연구)

  • Jang, SunBong;Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.67-73
    • /
    • 2008
  • In the Markov network which models disparity map with the Markov Random Field(MRF), the belief propagation algorithm is operated by message passing between nodes corresponding to each pixels. Belief propagation algorithm required much iteration for accurate result. In this paper, we propose the stereo matching algorithm using belief propagation in multi-resolution domain. Multi-resolution method based on wavelet or lifting can reduce the search area, therefore this algorithm can generate disparity map with fast speed.

  • PDF

Compare the accuracy of stereo matching using belief propagation and area-based matching (Belief Propagation를 적용한 스테레오 정합과 영역 기반 정합 알고리즘의 정확성 비교)

  • Park, Jong-Il;Kim, Dong-Han;Eum, Nak-Woong;Lee, Kwang-Yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.119-122
    • /
    • 2011
  • The Stereo vision using belief propagation algorithm that has been studied recently yields good performance in disparity extraction. In this paper, BP algorithm is proved theoretically to high precision for a stereo matching algorithm. We derive disparity map from stereo image by using Belief Propagation (BP) algorithm and area-based matching algorithm. Two algorithms are compared using stereo images provided by Middlebury web site. Disparity map error rate decreased from 52.3% to 2.3%.

  • PDF

A Study on the Generation and Processing of Depth Map for Multi-resolution Image Using Belief Propagation Algorithm (신뢰확산 알고리즘을 이용한 다해상도 영상에서 깊이영상의 생성과 처리에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.201-208
    • /
    • 2015
  • 3D image must have depth image for depth information in order for 3D realistic media broadcasting. We used generally belief propagation algorithm to solve probability model. Belief propagation algorithm is operated by message passing between nodes corresponding to each pixel. The high resolution image will be able to precisely represent but that required much computational complexity for 3D representation. We proposed fast stereo matching algorithm using belief propagation with multi-resolution based wavelet or lifting. This method can be shown efficiently computational time at much iterations for accurate disparity map.

Turbo Equalization using Belief Propagation (Belief Propagation을 이용한 터보 등화기)

  • Lee, Yun-Hee;Choi, Soo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.281-282
    • /
    • 2008
  • Turbo equalizers which use MAP (maximum a posteriori probability) equalizer or MMSE (minimum mean square error) equalizer have shown high performance and adoptability [1], [2]. In this paper, we show that the BP (belief propagation) algorithm can also be applied in equalizer and when it is connected with channel code, it can replace the MAP equalizer with similar complexity and performance.

  • PDF

CONVERGENCE OF A GENERALIZED BELIEF PROPAGATION ALGORITHM FOR BIOLOGICAL NETWORKS

  • CHOO, SANG-MOK;KIM, YOUNG-HEE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.515-530
    • /
    • 2022
  • A factor graph and belief propagation can be used for finding stochastic values of link weights in biological networks. However it is not easy to follow the process of use and so we presented the process with a toy network of three nodes in our prior work. We extend this work more generally and present numerical example for a network of 100 nodes.

Lossy Source Compression of Non-Uniform Binary Source via Reinforced Belief Propagation over GQ-LDGM Codes

  • Zheng, Jianping;Bai, Baoming;Li, Ying
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.972-975
    • /
    • 2010
  • In this letter, we consider the lossy coding of a non-uniform binary source based on GF(q)-quantized low-density generator matrix (LDGM) codes with check degree $d_c$=2. By quantizing the GF(q) LDGM codeword, a non-uniform binary codeword can be obtained, which is suitable for direct quantization of the non-uniform binary source. Encoding is performed by reinforced belief propagation, a variant of belief propagation. Simulation results show that the performance of our method is quite close to the theoretic rate-distortion bounds. For example, when the GF(16)-LDGM code with a rate of 0.4 and block-length of 1,500 is used to compress the non-uniform binary source with probability of 1 being 0.23, the distortion is 0.091, which is very close to the optimal theoretical value of 0.074.