• 제목/요약/키워드: Behavior-response performance

검색결과 691건 처리시간 0.025초

Collapse response assessment of low-rise buildings with irregularities in plan

  • Manie, Salar;Moghadam, Abdoreza S.;Ghafory-Ashtiany, Mohsen
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.49-71
    • /
    • 2015
  • The present paper aims at evaluating damage and collapse behavior of low-rise buildings with unidirectional mass irregularities in plan (torsional buildings). In previous earthquake events, such buildings have been exposed to extensive damages and even total collapse in some cases. To investigate the performance and collapse behavior of such buildings from probabilistic points of view, three-dimensional three and six-story reinforced concrete models with unidirectional mass eccentricities ranging from 0% to 30% and designed with modern seismic design code provisions specific to intermediate ductility class were subjected to nonlinear static as well as extensive nonlinear incremental dynamic analysis (IDA) under a set of far-field real ground motions containing 21 two-component records. Performance of each model was then examined by means of calculating conventional seismic design parameters including the response reduction (R), structural overstrength (${\Omega}$) and structural ductility (${\mu}$) factors, calculation of probability distribution of maximum inter-story drift responses in two orthogonal directions and calculation collapse margin ratio (CMR) as an indicator of performance. Results demonstrate that substantial differences exist between the behavior of regular and irregular buildings in terms of lateral load capacity and collapse margin ratio. Also, results indicate that current seismic design parameters could be non-conservative for buildings with high levels of plan eccentricity and such structures do not meet the target "life safety" performance level based on safety margin against collapse. The adverse effects of plan irregularity on collapse safety of structures are more pronounced as the number of stories increases.

내진성능의 증분동적해석을 위한 비선형 약산법의 비교 검토 (Comparison of Approximate Nonlinear Methods for Incremental Dynamic Analysis of Seismic Performance)

  • 배경근;유명화;강병두;김재웅
    • 한국지진공학회논문집
    • /
    • 제12권1호
    • /
    • pp.79-87
    • /
    • 2008
  • 구조물의 내진 성능 평가는 구조물에 가해진 지진력에 대한 변위요구와 같은 구조물의 성능 평가를 필요로 한다. 증분동적해석(IDA)은 지진하중에 대한구조물의 성능 평가를 위해 최근에 알려진 해석 방법이다. 이 방법은 구조물의 탄성 단계에서부터 항복, 파단에 이르기까지 지반가속도의 증가 수준에 따른 구조물의 전체 거동을 파악할 수 있는 방법이다. 대부분의 구조물들은 강한 지진을 받을 경우, 비선형 거동의 변형이 예상된다. 여러 가지 비선형해석법 가운데 구조물의 내진역량을 계산하기 위한 가장 정확한 방법은 비선형 시간이력해석(NRHA)이긴 하나 많은 시간과 노력이 요구되고 있다. 따라서 구조물의 비선형 거동을 보다 간편하게 예측하기 위한 정확하고 실용적인 비선형 약산해석법에 관한 연구들이 활발히 진행되고 있다. 비선형 모드중첩법(UMRHA)은 pushover곡선으로부터 구한 등가단자유도계를 비선형 시간이력해석 또는 응답스펙트럼을 이용하여 구조물의 비선형 응답을 구할 수 있는 방법이다. 직접스펙트럼해석법(DSA)은 pushover 해석으로부터 구조물의 선형 진동주기와 항복강도를 구한 다음, 반복계산 없이 비선형 응답을 직접 산정하는 약산법이다. 본 연구에서는 내진성능의 증분동적해석을 위한 비선형 약산법의 정확성과 신뢰성을 비교 검토한다.

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

Seismic response evaluation of concentrically rocking zipper braced frames

  • Sarand, Nasim Irani;Jalali, Abdolrahim
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.303-317
    • /
    • 2020
  • In this study an innovative rocking zipper braced frame (RZBF) is proposed to overcome the deficiencies of common concentrically braced frames. RZBF is an improved rocking concentrically braced frame which is based on combination of rocking behavior and zipper columns. The base rocking joints and post-tensioned bars provide rocking response and restoring force, respectively. Also, zipper columns distribute the unbalance force over the frame height and reduce the damage concentration. To evaluate seismic performance of RZBF, a comparison study is carried out considering concentrically braced frame, zipper braced frame, rocking concentrically braced frame and RZBF. Thereby, a suite of non-linear time history analyses had been performed on four different types of archetypes with four, six, eight, ten and twelve stories. Frames were designed and non-linear time history analyses were conducted in OpenSees. To compare the seismic behavior of the archetypes, roof drifts, residual roof drifts, story drifts, the forces of first and top story braces, PT bars forces, column uplift and base shears were taken in to consideration. Results illustrate that using RZBF, can reduce the damage due to reduced residual drifts. Zipper columns enhance the seismic performance of rocking systems. As the number of stories increase in the RZBF systems, larger top story braces were needed. So the RZBF system is applicable on low and midrise buildings.

거동대응성능 시험을 통한 방수층의 응력-변형률 분석 연구 (Stress-strain Analysis of Waterproof Layer through Behavioral Response Performance Test)

  • 송제영;정석주;서현재;이정훈;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.92-93
    • /
    • 2020
  • The test method to be developed is to determine whether the waterproof layer applied to the leak-prone part such as cracks and joints has defects such as tearing or lifting of the waterproof layer due to the influence generated from the behavior of the structure under complex deterioration conditions. This is to evaluate the performance of the waterproofing method afterwards. Therefore, by notifying only the pass or fail, the unique mechanical properties of the material or method used are notified to the test client to limit the physical properties of the test body, thereby determining and supplementing the weaknesses of the user material in advance to improve the high quality. We want to prevent damage from water leakage through production and distribution of materials.

  • PDF

반응수정계수의 영향에 따른 철골조 빌딩의 내진 성능 평가 (Performance Evaluation of Steel Moment Frame Buildings with Different Response Modification Factors)

  • 이기학
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2006
  • This study lotuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors) 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for twenty ground motions representing the hazard level which is equal to a 2% probability exceeding in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. However, the 20-story buildings designed without using the minimum requirement of spectral acceleration CS prescribed in the IBC 2000 did not satisfy the seismic performance for Collapse Prevention performance.

  • PDF

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

근거리지진의 특성과 동적응답스펙트럼에 관한 연구 (A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions)

  • 방명석;한성호
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

상판 위 질량의 순간적인 움직임에 의해 가진되는 6-자유도 공압제진대의 진동 응답에 대한 연구 (A study on response analysis of 6-DOF pneumatic vibration isolation table loaded by transient movements of carriage on it)

  • 선종오;신윤호;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.97-102
    • /
    • 2007
  • As environmental vibration requirements on precision equipments get more stringent, use of pneumatic vibration isolators becomes more crucial and, hence, their dynamic performance needs to be further improved. Dynamic behavior of those pneumatic vibration isolation tables is very important to both manufacturer and customer as performance specifications. Together with conventional transmissibility, transient response characteristics are another critical performance index especially when movements of components, e.g., x-y tables, of the precision equipments are very dynamic. In this paper, analysis on transient response of a pneumatic vibration isolation table loaded by a mass moving on it is presented. This is a conventional dynamics problem on a rigid body with 6 degree of freedom and a mass with another degree of freedom. How to obtain transient responses of the isolation table is described when the movements of the mass are prescribed relative to the table.

  • PDF