• Title/Summary/Keyword: Behavior-based Detection

Search Result 488, Processing Time 0.021 seconds

Design of Intelligent Intrusion Detection System Based on Distributed Intrusion Detecting Agents : DABIDS (분산 임칩 탐지 에이전트를 기반으로 한 지능형 침입탐지시스템 설계)

  • Lee, Jong-Seong;Chae, Su-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1332-1341
    • /
    • 1999
  • Rapid expansion of network and increment of computer system access cause computer security to be an important issue. Hence, the researches in intrusion detection system(IDS)are active to reduce the risk from hackers. Considering IDS, we propose a new IDS model(DABIDS : Distributed Agent Based Intelligent intrusion Detection System) based on distributed intrusion detecting agents. The DABIDS dynamically collects intrusion behavior knowledge from each agents when some doubtable behaviors of users are detected and make new agents codes using intrusion scenario data base, and broadcast the detector codes to the distributed intrusion detecting agent of all node. This DABIDS can efficiently solve the problem to reduce the overhead for training detecting agent for intrusion behavior patterns.

  • PDF

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose the Deep Learning-Based Companion Animal Abnormal Behavior Detection Service, which using video and sensor data. Due to the recent increase in households with companion animals, the pet tech industry with artificial intelligence is growing in the existing food and medical-oriented companion animal market. In this study, companion animal behavior was classified and abnormal behavior was detected based on a deep learning model using various data for health management of companion animals through artificial intelligence. Video data and sensor data of companion animals are collected using CCTV and the manufactured pet wearable device, and used as input data for the model. Image data was processed by combining the YOLO(You Only Look Once) model and DeepLabCut for extracting joint coordinates to detect companion animal objects for behavior classification. Also, in order to process sensor data, GAT(Graph Attention Network), which can identify the correlation and characteristics of each sensor, was used.

Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding

  • Huang, Shaonian;Huang, Dongjun;Khuhroa, Mansoor Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3769-3789
    • /
    • 2018
  • Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control (교통신호제어를 위한 HOG 기반 보행자 검출 및 행동패턴 인식)

  • Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1017-1021
    • /
    • 2013
  • The traffic signal has been widely used in the transport system with a fixed time interval currently. This kind of setting time was determined based on experience for vehicles to generate a waiting time while allowing pedestrians crossing the street. However, this strict setting causes inefficient problems in terms of economic and safety crossing. In this research, we propose a monitoring algorithm to detect, track and check pedestrian crossing the crosswalk by the patterns of behavior. This monitoring system ensures the safety for pedestrian and keeps the traffic flow in efficient. In this algorithm, pedestrians are detected by using HOG feature which is robust to illumination changes in outdoor environment. According to a complex computation, the parallel process with the GPU as well as CPU is adopted for real-time processing. Therefore, pedestrians are tracked by the relationship of hue channel in image sequence according to the predefined pedestrian zone. Finally, the system checks the pedestrians' crossing on the crosswalk by its HOG based behavior patterns. In experiments, the parallel processing by both GPU and CPU was performed so that the result reaches 16 FPS (Frame Per Second). The accuracy of detection and tracking was 93.7% and 91.2%, respectively.

Selection of Monitoring Nodes to Maximize Sensing Area in Behavior-based Attack Detection

  • Chong, Kyun-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.73-78
    • /
    • 2016
  • In wireless sensor networks, sensors have capabilities of sensing and wireless communication, computing power and collect data such as sound, movement, vibration. Sensors need to communicate wirelessly to send their sensing data to other sensors or the base station and so they are vulnerable to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic mechanisms. To defend against such attacks, a behavior-based attack detection is used in which some specialized monitoring nodes overhear the communications of their neighbors(normal nodes) to detect illegitimate behaviors. It is desirable that the total sensing area of normal nodes covered by monitoring nodes is as large as possible. The previous researches have focused on selecting the monitoring nodes so as to maximize the number of normal nodes(node coverage), which does not guarantee that the area sensed by the selected normal nodes is maximized. In this study, we have developed an algorithm for selecting the monitoring nodes needed to cover the maximum sensing area. We also have compared experimentally the covered sensing areas computed by our algorithm and the node coverage algorithm.

A Study of Logical Network Partition and Behavior-based Detection System Using FTS (FTS를 이용한 논리적 망 분리와 행위기반 탐지 시스템에 관한 연구)

  • Kim, MinSu;Shin, SangIl;Ahn, ChungJoon;Kim, Kuinam J.
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.109-115
    • /
    • 2013
  • Security threats through e-mail service, a representative tool to convey information on the internet, are on the sharp rise. The security threats are made in the path where malicious codes are inserted into documents files attached and infect users' systems by taking advantage of the weak points of relevant application programs. Therefore, to block infection of camouflaged malicious codes in the course of file transfer, this work proposed an integrity-checking and behavior-based detection system using File Transfer System (FTS), logical network partition, and conducted a comparison analysis with the conventional security techniques.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

A Machine Learning-Based Encryption Behavior Cognitive Technique for Ransomware Detection (랜섬웨어 탐지를 위한 머신러닝 기반 암호화 행위 감지 기법)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.12
    • /
    • pp.55-62
    • /
    • 2023
  • Recent ransomware attacks employ various techniques and pathways, posing significant challenges in early detection and defense. Consequently, the scale of damage is continually growing. This paper introduces a machine learning-based approach for effective ransomware detection by focusing on file encryption and encryption patterns, which are pivotal functionalities utilized by ransomware. Ransomware is identified by analyzing password behavior and encryption patterns, making it possible to detect specific ransomware variants and new types of ransomware, thereby mitigating ransomware attacks effectively. The proposed machine learning-based encryption behavior detection technique extracts encryption and encryption pattern characteristics and trains them using a machine learning classifier. The final outcome is an ensemble of results from two classifiers. The classifier plays a key role in determining the presence or absence of ransomware, leading to enhanced accuracy. The proposed technique is implemented using the numpy, pandas, and Python's Scikit-Learn library. Evaluation indicators reveal an average accuracy of 94%, precision of 95%, recall rate of 93%, and an F1 score of 95%. These performance results validate the feasibility of ransomware detection through encryption behavior analysis, and further research is encouraged to enhance the technique for proactive ransomware detection.

Modeling and damage detection for cracked I-shaped steel beams

  • Zhao, Jun;DeWoIf, John T.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.131-146
    • /
    • 2007
  • This paper presents the results of a study to show how the development of a crack alters the structural behavior of I-shaped steel beams and how this can be used to evaluate nondestructive evaluation techniques. The approach is based on changes in the dynamic behavior. An approximate finite element model for a cracked beam with I-shaped cross-section is developed based on a simplified fracture model. The model is then used to review different damage cases. Damage detection techniques are studied to determine their ability to identify the existence of the crack and to identify its location. The techniques studied are the coordinate modal assurance criterion, the modal flexibility, and the state and the slope arrays.