• Title/Summary/Keyword: Behavior of fluoride

Search Result 106, Processing Time 0.02 seconds

Survey of Oral Health Education Effects in Twenties (구강보건교육 경험에 대한 20대의 인식조사)

  • Shim, Hojin;Park, Soyoung;Song, Eunju;Shin, Jonghyun;Kim, Jin-Bom;Park, Haeryoun;Kim, Jiyeon;Jeong, Taesung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.4
    • /
    • pp.499-507
    • /
    • 2018
  • The purpose of this study was to improve efficacy of oral health education in children and adolescents based on the experience and perception of oral health education in young adults who graduated from high school within 10 years. Questionnaires were given to 412 people, and among them, 388 completed survey forms were selected. The questionnaire included categories which examined one's experience and perception of oral health education, oral health knowledge, dental history, and oral health behavior. The results showed that the respondents perceived elementary school as the most effective period of oral health education. Oral examination with direct explanation was the most preferred method of oral health education, but web search was the main source of oral health information. And knowledge of fluoride and sealant about caries preventive effect was still lacking. Considering these results, oral examination with direct explanation and web search would be useful to improve efficacy of oral health education in children and adolescents.

A Study on the Electrochemical Properties of Porous Carbon Electrode according to the Organic Solvent Contents (유기용매의 함량비에 따른 다공성 탄소전극의 전기화학적 특성 연구)

  • Lim, Jung-Ae;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In order to increase the surface area of electrodes for electrosorption, porous carbon electrodes were fabricated by a wet phase inversion method. A carbon slurry consisting of a mixture of activated carbon powder (ACP), polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP) as a solvent was cast directly on a graphite sheet. The cast film was then immersed in pure water for phase inversion. The physical and electrochemical properties of the electrodes were investigated using scanning electron microscopy (SEM), porosimetry, and cyclic voltammetry. The SEM images verified that the pores of various sizes were formed uniformly on the electrode surface. The average pore sizes determined for the electrodes fabricated with various NMP contents ranged from 64.2 to 82.4 nm and the size increased as the NMP content increased. All of the voltammograms showed a typical behavior of charging and discharging characteristic at the electric double layer. The electrical capacitance ranged from 3.88 to $5.87F/cm^2$ depending on the NMP contents, and the electrical capacitance increased as the solvent content decreased. The experimental results showed that the solvent content is an important variable controlling pore size and ultimately the capacitance of the electrode.

Organic-inorganic Nanocomposite Adhesive with Improved Barrier Property to Water Vapor for Backsheets of Photovoltaic Modules (태양광모듈용 저가형 백시트 제조를 위한 고수분차단성 유무기 나노복합형 접착제)

  • Hwang, Jin Pyo;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.530-537
    • /
    • 2015
  • Photovoltaic (PV) modules are environmentally energy conversion devices to generate electricity via photovoltaic effect of semiconductors from solar energy. One of key elements in PV modules is "Backsheet," a multilayered barrier film, which determines their lifetime and energy conversion efficiency. The representative Backsheet is composed of chemically resistant poly(vinyl fluoride) (PVF) and cheap poly(ethylene terephthalate) (PET) films used as core and skin materials, respectively. PVF film is too expensive to satisfy the market requirements to Backsheet materials with production cost as low as possible. The promising alternatives to PVF-based Backsheet are hydrocarbon Backsheets employing semi-crystalline PET films instead of PVF film. It is, however, necessary to provide improved barrier property to water vapor to the PET films, since PET films are suffering from hydrolytic decomposition. In this study, a polyurethane adhesive with reduced water vapor permeation behavior is developed via a homogeneous distribution of hydrophobic silica nanoparticles. The modified adhesive is expected to retard the hydrolysis of PET films located in the core and inner skin. To clarify the efficacy of the proposed concept, the mechanical properties and electrochemical PV performances of the Backsheet are compared with those of a Backsheet employing the polyurethane adhesive without the silica nanoparticles, after the exposure under standard temperature and humidity conditions.

Highly sensitive and selective detection of cyanide in aqueous solutions using a surface acoustic wave chemical sensor (표면음향파 화학센서를 이용한 수용액 중 시안화이온의 선택적인 고감도 검출)

  • Lee, Soo Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.473-479
    • /
    • 2016
  • We report a highly selective and sensitive 200 MHz Surface Acoustic Wave (SAW) sensor that can detect cyanide ion in aqueous solution using surface immobilized thioester molecules in combination with gold nanoparticles (AuNPs). To construct the sensor device, a monolayer of thioester compound was immobilized on the SAW sensor surface. At the sensor surface, hydrolysis of thioester group by nucleophilic addition of cyanide occurred and the resulting free thiol unit bound to AuNP to form thiol-AuNP conjugate. For the signal enhancement, gold staining signal amplification process was introduced subsequently with gold (III) chloride trihydrate and reducing agent, hydroxylamine hydrochloride. The SAW sensor showed a detection ability of $17.7{\mu}M$ for cyanide in aqueous solution and demonstrated a saturation behavior between the frequency shift and the concentration of cyanide ion. On the other hand, our SAW sensor had no activities for other anions such as fluoride ion, acetate ion and sulfate ion, moreover, no significant interference observed by other anions. Finally, all the experiments were carried out in-house developed sensor and fluidics modules to obtain highly reproducible results.

Study on Oral Symptom Experiences and Oral Health Behaviors of Primary School Children (초등학생의 구강증상 경험 및 구강건강행위에 관한 연구)

  • Kim, Soo-Kyung;Lim, Soon-Hwan;Won, Young-soon
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.381-385
    • /
    • 2009
  • This study carried out to provide basic educational material of primary school children to improve the children's oral health by oral health checkup and survey over 215 students in the first grade and the fourth grade at the primary school in Hwaseong city. The collected data were analyzed by SPSS Win 12.0 program 1. The rate of students who have decayed permanent teeth was 57.2%, and there seemed to be a significant difference between the two genders showing 61.6% for male students and 53.3% for female students. Also 1st grade showed 56.0% and 4th grade 58.1% respectively. 2. The male students who claimed 'bleeding gum' against questions about oral illness experiences were 15.7% whereas female students were 28.0%. There was a significant difference(p<0.05) by the gender. 3. The 4th grade students who said 'Toothache while eating cold food' about questions of oral symptoms appeared as 19.4% and 1st grade students were 8.8%. Also there was a significant difference(p<0.05) by the grade. 4. Regarding oral health improvement behavior, there were significant differences in frequency of toothbrushing a day, the number(p<0.05) of eating snacks a day and the number(p<0.01) of experience of visiting dental clinic(p<0.01). 5. About oral health behavior frequency of daily toothbrushing was found as twice(50.2%), twice of eating snacks a day(70.2%), using fluoride toothpaste 60.9% and visiting a dental clinic(60.0%), were shown as the highest numbers.

  • PDF

Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys (불소고분자내 유기용매의 비-픽 확산)

  • 이상화
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.24-34
    • /
    • 2004
  • Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Frequency Characteristics of Coercive Field in Ferroelectric Poly(Vinylidene Fluoride-Trifluoroethylene) Thin Film (강유전성 폴리(비닐리덴 플로라이드-트리플로로에틸렌) 박막의 항전계의 주파수 특성 분석)

  • Zhang, Ting;Rahman, Sheik Abdur;Khan, Shenawar Ali;Lee, Kwang-Man;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1206-1212
    • /
    • 2018
  • In this study, the polarization reversal characteristics of thin film capacitors with a thickness of 100 nm or less fabricated with ferroelectric polymer were measured and analyzed. For the fixed film thickness, polarization reversal occurred at higher coercive fields as the applied maximum electric field increased. For the fixed maximum electric field, polarization reversal occurred at the same coercive field irrespective of the thickness of the thin film. The proportional constant values between the logarithmic electric field and the logarithmic scale frequency were $0.12{\pm}0.01$ for all measurements. As a result, the ferroelectric polymer capacitors consistently exhibited polarization reversal characteristics without any size effects up to a thickness of 40 nm. This study shows the possibility of a polymer memory device that can operate at low voltage, which is useful for predicting the behavior of a low-voltage operating polymer memory device.

Cleaning Behavior of Aqueous Solution Containing Amine or Carboxylic Acid in Cu-interconnection Process (아민과 카르복실산이 함유된 수계용액의 구리 배선 공정의 세정특성)

  • Ko, Cheonkwang;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.632-638
    • /
    • 2021
  • With the copper interconnection in the semiconductor process, complex residues including copper oxide, fluoride, and polymeric fluorocarbon are formed by plasma etching. In this study, a cleaning solution was prepared with a component having an amine group (-NH2) and a carboxyl group (-COOH), and the characteristics of removing post-etch residues in the copper wiring process were analyzed. In the cleaning solution containing an amine group, the length of the component substituted with nitrogen and the length of the carbon chain influenced the cleaning effect, and the etching rate of copper oxide increased as the pH of the cleaning solution increased. The activity of the amine group is in the basic region, and the activity of the carboxyl group is in the acidic region, and the cleaning process proceeds through complex formation with copper or copper oxide in each region.

Structural Changes of PVDF Membranes by Phase Separation Control (상분리 조절에 의한 PVDF막의 구조 변화)

  • Lee, Semin;Kim, Sung Soo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.