• Title/Summary/Keyword: Behavior of complex system

Search Result 487, Processing Time 0.027 seconds

A Survey of the Nursing Interventions Performed by Pediatric Care Unit Nurses (국내 아동간호단위 간호중재 분석)

  • Oh Won-Oak
    • Child Health Nursing Research
    • /
    • v.7 no.4
    • /
    • pp.461-473
    • /
    • 2001
  • The purpose of this study was to identify nursing interventions performed by pediatric care unit nurses. For data collection this study used the taxonomy of Nursing Intervention Classification (NIC : 486 nursing intervention) which was modified by McCloskey & Bulecheck(2000). The 419 nursing interventions were selected by panel group, which consist of pediatric clinical experts and nursing scholars. The data were collected 104 nurses of pediatric care unit. There were 158 nursing interventions identified as being used at least monthly 50% or more of the nurses. The 32 nursing interventions were used at least daily, indication a set of core interventions unique to pediatric care unit practice. The most frequently used nursing interventions were 'Medication administration: intravenous' & 'Medication administration: oral'. The 27 nursing interventions were rarely performed by 90% or more of the nurses. The rarely used interventions were 'Ostomy care' & 'Rectal prolaps management'. The domain received the highest mean score was Health System, followed by Physiolocal: complex, Physiolocal: Basic, Safty, Community, Family, Behavior domain. These findings will help in building of a standardized language for the pediatric care units and enhance the quality of nursing care.

  • PDF

Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview

  • Oh, Donghun;Cheon, Keun-Ah
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.131-145
    • /
    • 2020
  • The microbiota-gut-brain axis, which refers to the bidirectional communication pathway between gut bacteria and the central nervous system, has a profound effect on important brain processes, from the synthesis of neurotransmitters to the modulation of complex behaviors such as sociability and anxiety. Previous studies have revealed that the gut microbiota is potentially related to not only gastrointestinal disturbances, but also social impairment and repetitive behavior-core symptoms of autism spectrum disorder (ASD). Although studies have been conducted to characterize the microbial composition in patients with ASD, the results are heterogeneous. Nevertheless, it is clear that there is a difference in the composition of the gut microbiota between ASD and typically developed individuals, and animal studies have repeatedly suggested that the gut microbiota plays an important role in ASD pathophysiology. This possibility is supported by abnormalities in metabolites produced by the gut microbiota and the association between altered immune responses and the gut microbiota observed in ASD patients. Based on these findings, various attempts have been made to use the microbiota in ASD treatment. The results reported to date suggest that microbiota-based therapies may be effective for ASD, but largescale, well-designed studies are needed to confirm this.

High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller (ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

A Study on the Drape Profile Analysis of the Apparel Textiles and 3D Virtual Textiles using a 3D Digital Clothing Software (3D 가상패션소재의 드레이프성 연구 - 3D 의상 CAD 시스템 활용 -)

  • Lee, Yoon-Ju;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.103-114
    • /
    • 2011
  • During a wearer's movement, the apparel fabric layers collide each other in a highly complicated manner. The collision involves cloth-cloth, and cloth-body collision. The diversity of the textile fabrics, including silk, wool, cotton, and other synthetic fibers, together with the complex details of the apparel construction, makes the collision and other calculation procedure involved in the 3-dimensional clothing software system much more complicated. Therefore, there is a need to measure the behavior of the fabrics during the fabric collision cycles. In this study, as a first step, static measurements pertinent to the factors governing the appearance of the apparel fabrics were implemented. The drape profile, stiffness(Sd and Sf), tensile properties, thickness, and the air permeability were measured. The correlation between the parameters were calculated and reviewed. It is found that there is a high correlation of 0.97 between the actual fabric drape parameters and the 3D virtual fabric drape parameters. The measured drape coefficients of the fabrics show relatively good correlation with the measured fabric stiffness.

Two scale seismic analysis of masonry infill concrete frames through hybrid simulation

  • Cesar Paniagua Lovera;Gustavo Ayala Milian
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • This paper presents the application of hybrid-simulation-based adapter elements for the non-linear two-scale analysis of reinforced concrete frames with masonry infills under seismic-like demands. The approach provides communication and distribution of the computations carried out by two or more remote or locally distributed numerical models connected through the OpenFresco Framework. The modeling consists of a global analysis formed by macro-elements to represent frames and walls, and to reduce global degrees of freedom, portions of the structure that require advanced analysis are substituted by experimental elements and dimensional couplings acting as interfaces with their respective sub-assemblies. The local sub-assemblies are modeled by solid finite elements where the non-linear behavior of concrete matrix and masonry infill adopt a continuum damage representation and the reinforcement steel a discrete one, the conditions at interfaces between concrete and masonry are considered through a contact model. The methodology is illustrated through the analysis of a frame-wall system subjected to lateral loads comparing the results of using macro-elements, finite element model and experimental observations. Finally, to further assess and validate the methodology proposed, the paper presents the pushover analysis of two more complex structures applying both modeling scales to obtain their corresponding capacity curves.

Change of Oceanographic Environment in the Nakdong Estuary (낙동강 하구에서의 해양 환경 변화)

  • JANG SUNG-TAE;KIM KI-CHEOL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • The Nakdong Estuary is complex water system, where sea water and fresh water meet each other. It has undergone the significant change of its environmental conditions since the construction of the Nakdong River Barrier in 1987. Prior to its construction, mixing and circulation processes in the Nakdong Estuary was dominated by tidal current. However, after the dam construction, those processes were greatly altered by the artificial control of the fresh river water discharge. In this paper, the influence of opening and closing the floodgate of Nakdong River on the outflow behavior of estuarine water from the Nakdong Estuary is analyzed in detail.

Interval finite element analysis of masonry-infilled walls

  • Erdolen, Ayse;Doran, Bilge
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2012
  • This paper strongly addresses to the problem of the mechanical systems in which parameters are uncertain and bounded. Interval calculation is used to find sharp bounds of the structural parameters for infilled frame system modeled with finite element method. Infill walls are generally treated as non-structural elements considerably to improve the lateral stiffness, strength and ductility of the structure together with the frame elements. Because of their complex nature, they are often neglected in the analytical model of building structures. However, in seismic design, ignoring the effect of infill wall in a numerical model does not accurately simulate the physical behavior. In this context, there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure of infill walls. Structural uncertainties can be studied with a finite element formulation to determine sharp bounds of the structural parameters such as wall thickness and Young's modulus. In order to accomplish this sharp solution as much as possible, interval finite element approach can be considered, too. The structural parameters can be considered as interval variables by using the interval number, thus the structural stiffness matrix may be divided into the product of two parts which correspond to the interval values and the deterministic value.

Synthesis of Glycidyl Azido Copolyetherdiol for Solid Propellant Polyurethane Binder (Glycidyl Azido Copolyetherdiol을 이용한 Polyurethane의 합성과 특성분석)

  • Shin, Bum-Sik;Lee, Bum-Jae;Park, Young-Chul;Hwang, Kab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.231-236
    • /
    • 2008
  • The well-defined copolymers derived from Epichlorohydrin(ECH), Tetrahydrofuran(THF) were synthesized by Cationic ring-opening polymerization(CROP) with 1,4-Butandiol, a initiator, and $BF_3THF$ Complex, a catalyst via Activated monomer mechanism, which could lead to hydroxyl-terminated polyethers. The molecular weight of polymers were dependant on the ratio of [monomer]/[diol], Copolymer structures were controlled by monomers feed ratio, ECH and THF added. This polymers were functionalized from Chlorine group to Azide group using $S_N2$ reaction. Synthesized polymers were found to be as the prepolymer for polyurethane. Polyurethane was synthesized in the presence of N-100/IPDI mixture, a curing agent, and TPB(triphenyl bismuth)/MA(Maleic anhydride) mixture, a catalyst system. The curing behavior and mechanical properties of polyurethane after mixing with various prepolymer’s composition and the molecular weight were studied.

  • PDF

A SE Approach to Predict the Peak Cladding Temperature using Artificial Neural Network

  • ALAtawneh, Osama Sharif;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2020
  • Traditionally nuclear thermal hydraulic and nuclear safety has relied on numerical simulations to predict the system response of a nuclear power plant either under normal operation or accident condition. However, this approach may sometimes be rather time consuming particularly for design and optimization problems. To expedite the decision-making process data-driven models can be used to deduce the statistical relationships between inputs and outputs rather than solving physics-based models. Compared to the traditional approach, data driven models can provide a fast and cost-effective framework to predict the behavior of highly complex and non-linear systems where otherwise great computational efforts would be required. The objective of this work is to develop an AI algorithm to predict the peak fuel cladding temperature as a metric for the successful implementation of FLEX strategies under extended station black out. To achieve this, the model requires to be conditioned using pre-existing database created using the thermal-hydraulic analysis code, MARS-KS. In the development stage, the model hyper-parameters are tuned and optimized using the talos tool.

Vibration Reduction for a Railway Depot Building (II): Design Parameters (철도인공대지에 건설된 아파트의 방진대책(II): 설계변수)

  • Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.358-364
    • /
    • 2013
  • In the second part of the paper, a design strategy for an apartment complex constructed at a railway depot is proposed for vibration reduction purposes. Various design parameters such as the vehicle operating speeds, artificial land behavior, housing support structure, and apartment sub-structures are individually examined to reduce the transmission of vibrations through building structures. Building construction on an artificial land should be subjected to regulations that require the application of a vibration reduction scheme based on the mechanics that govern the vibration transmission phenomena. The implementation of these parameters at an early design stage will provide a quiet living environment for residents who may be exposed to excessive noise and vibration.