• 제목/요약/키워드: Behavior Modeling

검색결과 3,031건 처리시간 0.029초

Modified Structural Modeling Method and Its Application: Behavior Analysis of Passengers for East Japan Railway Company

  • Nagata, Kiyoshi;Umezawa, Masashi;Amagasa, Michio;Sai, Fuyume
    • Industrial Engineering and Management Systems
    • /
    • 제7권3호
    • /
    • pp.245-256
    • /
    • 2008
  • In order to cope with the ill-defined problem of human behavior being immanent uncertainty, several methodologies have been studied in game theoretic, social psychological and political science frameworks. As methods to arrange system elements systematically and draw out the consenting structural model concretively, ISM, FSM and DEMATEL based on graph theory etc. have been proposed. In this paper, we propose a modified structural modeling method to recognize the nature of problem. We introduce the statistical method to adjust the establishment levels in group decision situation. From this, it will become possible to obtain effectively and smoothly the structural model of group members in comparison with the traditional methods. Further we propose a procedure for achieving the consenting structural model of group members based on the structural modeling method. By applying the method to recognize the nature of ill-defined problems, it will be possible to solve the given problem effectively and rationally. In order to inspect the effectiveness of the method, we conduct a practical problem as an empirical study: "Behavior analysis of passengers for the Joban line of East Japan Railway Company after new railway service of Tsukuba Express opened".

Surface Complexation Model을 이용한 양이온 중금속(Pb, Cd) 흡착반응의 모델화 연구 (Studies on the Adsorption Modeling of Cationic Heavy Metals(Pb, Cd) by the Surface Complexation Model)

  • 신용일;박상원
    • 한국환경과학회지
    • /
    • 제8권2호
    • /
    • pp.211-219
    • /
    • 1999
  • Surface complexation models(SCMs) have been performed to predict metal ion adsorption behavior onto the mineral surface. Application of SCMs, however, requires a self-consistent approach to determine model parameter values. In this paper, in order to determine the metal ion adsorption parameters for the triple layer model(TLM) version of the SCM, we used the zeta potential data for Zeolite and Kaolinite, and the metal ion adsorption data for Pb(II) and Cd(II). Fitting parameters determined for the modeling were as follows ; total site concentration, site density, specific surface area, surface acidity constants, etc. Zeta potential as a new approach other than the acidic-alkalimetric titration method was adopted for simulation of adsorption phenomena. Some fitting parameters were determined by the trial and error method. Modeling approach was successful in quantitatively simulating adsorption behavior under various geochemical conditions.

  • PDF

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

청소년의 중독예방을 위한 중독예방 핵심역량모형 구축 (Construction of the Addiction Prevention Core Competency Model for Preventing Addictive Behavior in Adolescents)

  • 박현숙;정선영
    • 대한간호학회지
    • /
    • 제43권6호
    • /
    • pp.714-725
    • /
    • 2013
  • Purpose: This study was done to provide fundamental data for the development of competency reinforcement programs to prevent addictive behavior in adolescents through the construction and examination of an addiction prevention core competency model. Methods: In this study core competencies for preventing addictive behavior in adolescents through competency modeling were identified, and the addiction prevention core competency model was developed. It was validated methodologically. Results: Competencies for preventing addictive behavior in adolescents as defined by the addiction prevention core competency model are as follows: positive self-worth, self-control skill, time management skill, reality perception skill, risk coping skill, and positive communication with parents and with peers or social group. After construction, concurrent cross validation of the addiction prevention core competency model showed that this model was appropriate. Conclusion: The study results indicate that the addiction prevention core competency model for the prevention of addictive behavior in adolescents through competency modeling can be used as a foundation for an integral approach to enhance adolescent is used as an adjective and prevent addictive behavior. This approach can be a school-centered, cost-efficient strategy which not only reduces addictive behavior in adolescents, but also improves the quality of their resources.

계획된 행위이론을 기반으로 한 미혼여성의 생식건강증진행위 구조모형 (A Structural Equation Modeling on Reproductive Health Promoting Behavior of Unmarried Women: Based on the Theory of Planned Behavior)

  • 지은미;최소영;제남주
    • 여성건강간호학회지
    • /
    • 제22권4호
    • /
    • pp.210-220
    • /
    • 2016
  • Purpose: The purpose of this study was to construct and test a structural equation modeling on the reproductive health behavior of single women with sexual experiences. This study employed Ajzen's Theory of Planned Behavior (TPB). Methods: The data were collected after receipt of consent from 250 single women with sexual experiences, and analyzed using SPSS 18.0 and AMOS 18.0. Results: Model fit indices for the hypothetical model were suitable for the recommended level: $x^2=362.407$, RMR=0.065, RMSEA=0.070, GFI=0.867. TLI=0.927, CFI=0.938, IFI=0.939, and $x^2/dF=2.237$. Intention showed direct effect with the biggest effect being on reproductive health behavior. Attitude, subjective norm and perceived behavioral control were found to have a direct effect on intention. Among them, perceived behavioral control revealed the largest influence. Conclusion: This study suggests that the TPB is a suitable model in explaining the reproductive health behavior of single women with sexual experience. Strategic plans for educational and intervention programs should be aimed to encourage single women to engage in reproductive health behavior.

판재성형 해석시 금형내의 공기거동 모델링 (Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming)

  • 최광용;김헌영
    • 소성∙가공
    • /
    • 제20권5호
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • 토지주택연구
    • /
    • 제11권2호
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.