• Title/Summary/Keyword: Bedrock rivers

Search Result 14, Processing Time 0.024 seconds

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

A review and new view on the study on minor erosional forms in bedrock channels in Korea (한국의 기반암 하상 침식 지형 연구)

  • KIM, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.35-57
    • /
    • 2011
  • Minor erosional forms in the bedrock river, like potholes, are not just research subject for the professional geomorphologis. In addition, these features attract general public and make them understand the social contribution and importance of geomorphologic research activities. In this paper, the studies on bedrock minor forms in Korea was reviewed. For further researches, some of major erosional processes and minor forms in bedrock rivers were discussed in detail. Cavitation, plucking, hydro-wedging, and abrasion by passing sediment particles are the major processes to create the longitudinal or transverse minor forms like pothole, furrows, flutes, and runnels. Especially the definition of furrows and runnels are explained to prevent the confusion with pothole, weathering pits and grooves. To make a progress in research on bedrock minor forms the quantitative relationship between the variables should be studied. New techniques for scientific estimation of erosion rates and exposure ages of bedrock surfaces should be used in this field.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

A Study on the Information of Landforms in the vicinity of the Hantan River (한탄강(漢灘江) 일대(一帶)의 지표기복(地表起伏)에 관한 정보(情報))

  • Kim, Joo-Hwan
    • Journal of the Speleological Society of Korea
    • /
    • no.72
    • /
    • pp.19-30
    • /
    • 2006
  • The purpose of this study is to clarified the geology and geomorphic characteristics of the Hantan River Basin. In this area, some kind of landforms are developed such as pre-land forms, lava plateau, and present landforms etc. Some river terraces are peculiar features in the area. Some conclusions are as follows : The vicinity of the Hantan River is lava plateau formed from the volcanic activity. Some steptoes are located in the lava plateau. Baekeuiri formation means the river bed boulder beneath the lava formation. The development of drainage patterns are unstable and the bifurcation ratio, the ratio of mean length of the river are lower than the other rivers. The relative height of the terraces is about $5{\sim}25m$ and the terraces are alluvial terraces. In the Jiktang Fall area, bedrock is granite and basalt plateau covered the bedrock. In that point, the old erosion surface is relatively steeper than the horizontal-basalt plateau. Vertical columnar joints are developed and weathering materials creep on the valley wall. The cross section of the landform of the Kosukjung vicinities are somewhat different from the landforms of Jiktang Fall. The bedrock near the Kosukjung is granite that is the same with the Jiktang Fall. But the cross section shows a asymmetrical curve from each side.

Analysis of Groundwater Conductivity and Water Temperature Changes in Greenhouse Complex by Water Curtain Cultivation (수막용수 사용으로 인한 시설재배지역의 지하수 수온과 전기전도도 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.93-103
    • /
    • 2023
  • This study aimed to analyze the impact of water curtain cultivation in the greenhouse complexes on groundwater's electric conductivity and water temperature. The greenhouse complexes are mainly situated along rivers to secure water resources for water curtain cultivation. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. As a result of analyzing the electric conductivity and water temperature, the following differences were found in the observed characteristics by region. 1) The electric conductivity and water temperature of the riverside area, where the permeability is high and close to rivers, showed a constant pattern of annual changes due to the influence of river flow and precipitation. 2) The flat land in general agricultural areas showed general characteristics of bedrock observation in the case of water temperature. Still, it seemed more affected by the surrounding well's water use and water quality. The electric conductivity did not show any particular trend and was influenced by the surrounding environment according to the location of each point.

Geomorphic development of the Jeogchung·Chogye Basin and inner alluvial fan, Hapcheon, South Korea (합천 적중·초계분지와 분지 내 선상지 지형발달)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.1
    • /
    • pp.225-239
    • /
    • 2016
  • The Jeogchung Chogye Basin shows perfect basin formation surrounded with divides, excluding outlet where Sannae River combining various small rivers escapes the basin. High mountains distribute at southwestern, southern and southeastern divides of the basin consisting of hornfels, while hilly mountains are found at northern divide consisting of sedimentary rock. Alluvial fans and flood plains occupy bottom of the basin. While extensive alluvial fans are found at the front of southern divide where rivers with large drainage areas rise, alluvial fans toward eastern and western divides become small due to low elevation of divides. Flood deposits by Hwang River are attributed to development for most of flood plains at northern part of the basin. The basin seems to be developed not by differential erosion or meteorite impact, but by bedrock weathering along lineament or fault lines by ground motion.

  • PDF

Analysis of Fluvial Terraces at Kohyun River in Youngcheon City (경북 영천시 고현천의 하안단구 지형 분석)

  • Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.447-462
    • /
    • 2009
  • Kohyun River basin is located at southern parts of Taebaek Mountains and most of river basins consists of sedimentary rock. The aims of this study are to investigate the distribution characteristics and processes of fluvial terraces at Kohyun River, using scientific methods such as classification of fluvial landforms, analysis of geomorphological deposits, XRD and OSL age dating. In Kohyun River basin are three levels terraces from T1 to T3. Fluvial terraces are assumed to be erosional terraces according to deposited situation of alurium and existences of bedrock riverbed. From the result of OSL age dating, formation age of fluvial terrace 1(T1) is calculated about 37,000 yr.B.P.(MIS 3), and fluvial terrace 2(T2) is calculated about 113,000 yr.B.P.(MIS 5). Therefore, fluvial terraces at Kohyun River are assumed to be formed at warmer period in the glacial stages or cooler period in the interglacial stages. The incision rate of fluvial terrace 1 at Kohyun River is calculated to be 0.054m/ka, and the incision rate of fluvial terrace 2 is calculated to be 0.115m/ka. This results suggest to lower incision rate than other rivers in Korea because of low uplift rates and little discharge.

Analysis on the Characteristics of the Landslide - With a Special Reference on Geo-Topographical Characteristics - (땅밀림 산사태의 발생특성에 관한 분석 - 지형 및 지질특성을 중심으로 -)

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.588-597
    • /
    • 2015
  • This study was carried out to identify the reasons of the landslide by land creeping in South Korea in order to provide basic information for establishing the management plan for prevention. Total 29 sites of landslide areas caused by land creeping were observed in South Korea. Among them, the soil-composition of most frequent landslide areas occurred by land creeping was colluvium landslide as 75.9% (22 sites), followed by clay soil landslide as 10.3% (3 sites), bedrock landslide as 6.9% (2 sites), and weathered rock landslide as 6.9% (2 sites). According to the types of parental rocks, the investigated landslide areas were divided into 3 types: 1) metamorphic rocks including schist, phylite, migmatitic gneiss, quartz schist, pophyroblastic gneiss, leucocratic granite, mica schst, banded gneiss and granitic gneiss, 2) sedimentary rocks including limestone, sandstone or shale and mudstone, 3) igneous rocks such as granite, andesite, rhyolite and masanite. As a result, it was noticed that the landslides occurred mostly at the metamorphic rocks areas (13 sites; 44.8%), followed by sedimentary rock areas (12 sites; 41.4%), and igneous rock areas (4 sites; 13.8%). Looking at the direct causes of the landslide, the anthropological activities (71%) such as cut slopes for quarrying, construction of country house, plant, and road, farming of mountain top, and reservoir construction were the biggest causes of the landslides, followed by the land creeping landslides (22%) caused by geological or naturally occurred (22%), and cliff erosions (7%) by caving of rivers and valleys.

The Geomorphic Development of Angyae Basin (안계분지(安溪盆地)의 지형발달)

  • Bak, Byeong-Su;Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 1997
  • In various places of drainage basins of major rivers in South Korea are distributed intermontane basins. Basin floor covered with fluvial deposits carried from the surrounding mountane area becomes alluvial plain. Its productivity is comparatively higher than anywhere else. Thus basin is a local administrative, economic, and cultural core area. Intermontane basin consists of backward mountane area, gentle hills, and alluvial lowland. The purpose of this paper is to elucidate the morpogenetic processes and development age of Angae Basin located in the sedimentary rock region. Hills with the height of a.s.l. $80{\sim}100m$ distributed in Angae Basin are residual landforms, which are the remnants of dissection of the etchplain that results from the denudation of bedrock deeply weathered along tectolineaments under the warm and moist climate, and reflect lithological differentiation of bedrock. Those hills have been comparatively higher ridges since the initial stage of the original etchplain, and they have been immune from fluvial processes. The etchplain appeared as $80{\sim}100m$ hills. the high terrace distributed in upstream reach of Nakdong River drainage basin and the old meander-cut at Seoburi in Wicheon drainage basin, are formed at the same stage when riverbed of Wicheon Stream functioned as a local base level according as the fluvial system of Wichoen arrived at dynamic equilibrium.

  • PDF

A Study on Relationship between Point Load Strength Index and Abrasion Rate of Sediment Particle (퇴적물 입자의 점하중강도지수와 마식율의 관계에 대한 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.808-823
    • /
    • 2008
  • Sediment abrasion in rivers is caused by the interaction between bedrock channel bed and sediment particles transported through the river. Abrasion rate of sediment particles in rivers is controlled by two major factors; Sediment transport conditions including hydraulic conditions form the erosive forces and physical and chemical strengths of the particles form a resistance force against abrasion and other erosional processes. Physical experiments were performed to find the role of each variable on sediment abrasion process. Total 266 sediment particles were used in this experiment. All sediment particles were divided into 11 independent sediment groups with sediment particle size and sediment loads. Each sediment groups were abraded in tumbling mill for up to 8 hours. Changes in weight were recorded by run and total: 2,128 cases of abrasion rate were recoded. Physical strength of rock particles was measured with point load strength index. It is found that sediment abrasion rate has a negative functional relationship point load strength index ($I_{a(50)}$) ($R^2=0.22$). It was suggested that physical strength of sediment particles set the "maximum possible abrasion rate'. As sediment flux increases, abrasion rates of sediment particles with similar point load strength index were changed. It could be concluded that not only physical characteristics of sediment particles, but also sediment transport conditions control sediment abrasion rates.