• Title/Summary/Keyword: Bed temperature

Search Result 1,039, Processing Time 0.031 seconds

Air Flow and Heat Storage Performance of Solar-Heated Greenhouse with Rock Bed Storage (자갈축열 태양열 온실의 공기유동 및 축열 성능)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-280
    • /
    • 2001
  • The purpose of this study was to investigate the air flow characteristics of the rock bed storage for solar-heated greenhouse design. Heat storage material was gravels and experiments were performed under constant inside temperature condition. The experimental parameters were operation method and air flow rate of fan. It was resulted that the temperature and amount of heat stored in rock-bed increased as the increase of air flow velocity and were more influenced by operation of inlet fan than outlet fan.

  • PDF

Combustion of RDF and RPF in a Lab-Scale Circulating Fluidized Bed (실험실규모 순환유동층에서 RDF와 RPF의 연소 특성에 관한 연구)

  • Lee, J.S.;Lee, E.L.;An, M.H.;Park, S.U.;Shin, D.H.;Hwang, J.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.173-179
    • /
    • 2004
  • Combustion of refuse derived fuel(RDF) and refuse plastic fuel (RPF) was carried out in a lab-scale circulating fluidized bed. Experiment was investigated cold flow visualization. RDF was made by C & tech and RPF was made by KRS. The results include distribution of temperature in the combustion chamber, and concentrations of flue gas such as $O_2$, $CO_2$, CO, $NO_x$ and HCs Micro G.C(gas chromatograph) was employed to find out concentration of He Temperature distribution was different when RDF and RPF were burnt respectably. As air ratio became increased, $CO_2$, CO, and total of HCs emissions were decreased. According to the number of carbon atom of HCs, HC were classified as five kinds of HC.

  • PDF

Mathematical Model and Numerical Analysis for Packed Bed Methanation Reactors (충전층 메탄화 반응기의 수학적 모델 및 전산 수치해석)

  • CHI, JUNHWA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.260-270
    • /
    • 2015
  • One-dimensional packed bed reactor model accounting for interfacial and intra-particle gradients was developed and based on it numerical analyses were performed to investigate the dynamic behavior of a commercial scale methanation reactor. Methanation reaction was almost complete near the reactor inlet and gases with equilibrated composition were discharged from the reactor. Both the intra-particle temperature gradient and differential surface temperature rise were found to be severe near the reactor inlet. To reduce the possible degradation or fracture of catalyst particles and prevent local overheating on the catalyst, addition of inert material can be an effective way.

Studies on the Sambucus silliamsii var. coreana Nakai for Landscape use (야생딱총나무(Sambucus williamsii var. coreana Nakai)의 조경식목 화를 위한 기초 연구)

  • 김정미;박용진;이기훤
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.1
    • /
    • pp.139-148
    • /
    • 1993
  • The present experiments have been conducted to find out the plant's growth environments habitate, mode of life, characteristic of photosynthesis, habit of growth and propagation. The results of this study are as follows: 1. Sambucus williamsii var. Coreana distributes around all sides of native site without having any relation to altitude, inclination and direction. 2. In the native site, Robinia pseudo - acacia and its neighboring species were Prunus yedoensis, Acer pseudo-sieboldianum, Lindera obtusiloba and Staphylea bumalda. From 21 to 41 types of species were located in the vegetation of the quadrat area. 3. According to the variation of leaf temperature with the result of the change of net photosynthetic rate, the optimum temperature for growth is $25^{\circ}C$. 4. The rooted rate of vegetative propagation was the highest at 100ppm IBA plot and the lowest at 200ppm BA plot. 5. The rooted rates of Sambucus williamsii var. coreana in perlite 50% bed, vermiculite bed and peatmoss 50%+sand 50% bed are higher than others.

  • PDF

Pyrolysis and combustion characteristics of dried sewage sludge in a fixed bed reactor (건조 하수 슬러지의 열분해 및 고정층 연소 특성 연구)

  • Kim, Minsu;Lee, Yongwoon;Park, Jinje;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.29-32
    • /
    • 2014
  • The practical route for disposal of sewage sludge becomes energy recovery by combustion after its ocean dumping is banned in 2012 in Korea. Due to the high moisture content, however, sewage sludge is required to be dried before transport and combustion. In this study, pyrolysis and combustion characteristics of dried sewage sludge was investigated in a small-scale fixed bed reactor in order to provide fundamental data for energy recovery of the fuel. As the first step of combustion, the primary products of pyrolysis were analyzed in a fixed bed reactor for the condensable volatiles (tar), non-condensable gases, and char. For the combustion characteristics, another fixed bed reactor was constructed to monitor the weight and temperature of the fuel particles during ignition and combustion under different air flow rates. The test results were used to derive the ignition and burning rates.

  • PDF

Studies on Surface and Gas Reactions in a Catalytically Stabilized Combustor (촉매연소가 지원된 연소기에서의 표면반응과 가스반응에 관한 연구)

  • Seo, Yong-Seog;Yu, Sang-Phil;Jeong, Nam-Jo;Lee, Seung-Jae;Song, Kwang-Sup;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.287-298
    • /
    • 2003
  • A numerical investigation of a catalytically stabilized thermal (CST) combustor was conducted for a multi-channel catalyst bed, and both the catalyst bed and thermal combustor were simultaneously modeled. The numerical model handled the coupling of the surface and gas reaction in the catalyst bed as well as the gas reaction in the thermal combustor. The behavior of the catalyst bed was investigated at a variety of operating conditions, and location of the flame in the CST combustor was investigated via an analysis of the distribution of CO concentration. Through parametric analyses of the flame position, it was possible to derive a criterion to determine whether the flame is present in the catalyst bed or the thermal combustor for a given inlet condition. The results showed that the maximum inlet temperature at which the flame is located in the thermal combustor increased with increasing inlet velocity.

  • PDF

Particle Attrition Characteristics in a Bubbling Fluidized Bed Under High Temperature and High Pressure Conditions (고온 고압 조건하의 기포유동층 반응기에서의 입자 마모특성)

  • Moon, Jong-Ho;Lee, Dong-Ho;Ryu, Ho-Jung;Park, Young Cheol;Lee, Jong-Seop;Min, Byoung-Moo;Jin, Gyoung Tae
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.359-366
    • /
    • 2014
  • Attrition characteristics of PKM1-SU particles, $CO_2$ absorbents for pre-combustion $CO_2$ capture process, and FCC particles, catalytic particles for hydro cracking of crude oil, were investigated at high temperature and high pressure conditions. Particle attrition tests were executed at various kinds of temperature ($0-400^{\circ}C$) and pressure (0-20 bar) conditions in a cylinder type bubbling fluidized bed with 15.1 cm diameter, 120 cm height and 1 mm orifice-sparger tube. Attrited particles before and after tests were analyzed by BET, optical microscopy, and particle size analyzer. Effects of bed material height (solid inventory) and steam injection were also verified by using ASTM D5757-95, conventional attrition test method.

Hydrogen Reduction of NiO Particles in a Single-Stage Fluidized-Bed Reactor without Sticking

  • Oh, Chang-Sup;Kim, Hang Goo;Kim, Yong Ha
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.79-83
    • /
    • 2016
  • A commercial NiO (green nickel oxide, 86 wt% Ni) powder was reduced using a batch-type fluidized-bed reactor in a temperature range of 500 to $600^{\circ}C$ and in a residence time range of 5 to 90 min. The reduction rate increased with increases in temperature; however, agglomeration and sintering (sticking) of Ni particles noticeably took place at high temperatures above $600^{\circ}C$. An increasing tendency toward sticking was also observed at long residence times. In order to reduce the oxygen content in the powder to a level below 1% without any sticking problems, which can lead to defluidization, proper temperature and residence time for a stable fluidized-bed operation should be established. In this study, these values were found to be $550^{\circ}C$ and 60 min, respectively. Another important condition is the specific gas consumption rate, i.e. the volume amount ($Nm^3$) of hydrogen gas used to reduce 1 ton of Green NiO ore. The optimum gas consumption rate was found to be $5,000Nm^3/ton$-NiO for the complete reduction. The Avrami model was applied to this study; experimental data are most closely fitted with an exponent (m) of $0.6{\pm}0.01$ and with an overall rate constant (k) in the range of 0.35~0.45, depending on the temperature.

Characteristics of Bed-log of Shiitake Damaged by Bjerkandera adusta and Antagonism between These Two Fungi (줄버섯 피해 표고골목의 특성 및 표고균과의 대치배양)

  • Bak, Won-Chull;Lee, Bong-Hun;Park, Young-Ae;Kim, Hyun-Seok
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.44-47
    • /
    • 2011
  • A harmful fungus occurred seriously in bed-log of shiitake(Lentinula edodes) in Jangheung-Gun, Korea. The fungus was identified as Bjerkandera adusta by its morphology and ITS(Internal Transcribed Spacer) analysis. The fungus was reported as causal agent of stem-rot of Populus euramericana in Korea, but not reported in bed-log of shiitake until this notification. Thus, studies were made to investigate inside condition of bed-log of shiitake damaged by B. adusta, physiological characteristics of B. adusta and antagonism between these two fungi. First of all, B. adusta is white-rotting fungus like shiitake and wood-rotting condition is similar to that of shiitake. But, there are a lot of small spots in damaged wood tissue under bark which are not seen in case of shiitake. Optimal temperature for mycelial growth of B. adusta is ca. $30^{\circ}C$ while that of shiitake is ca. $25^{\circ}C$. When confrontation cultures were made between these two fungi under $15^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$ and $30^{\circ}C$, B. adusta has antagonistic ability against shiitake in all the temperatures. From the results of experiments, if the bed-logs of shiitake are exposed to high temperature, there should be mass propagation of B. adusta, and shiitake mycelia will be seriously injured by the fungus. Therefore, to prevent the damage by B. adusta, it is needed to grow the mycelia of shiitake fast in the bed-log, and to avoid exposure of the bed-log to high temperature in summer.

Spot Heating Technology Development for Strawberry Cultivated in a Greenhouse by Using Hot Water Pipe (온수배관을 이용한 시설딸기 부분난방기술 개발)

  • Moon, Jongpil;Kang, Geum-Choon;Kwon, Jin-Kyung;Paek, Yee;Lee, Tae Seok;Oh, Sung-Sik;Nam, Myeong-Hyeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.71-79
    • /
    • 2016
  • The effects of spot heating for growing the strawberry cultivated in a plastic greenhouse during the winter that were estimated in Nonsan strawberry experiment station located in Chungnam. The temperature of water for heating was controlled by a electric hot water boiler and kept at the range of $22{\sim}24^{\circ}C$. Heating pipes were set up in root zone for root zone heating and very close to crown for crown heating. Spot heating effects were estimated by applying spot heating system in three test factors of heating root zone, crown only and crown plus root zone. The material for crown heating pipe was white low density polyethylene and the nominal diameter of that pipe was 16 mm. The material for root zone heating pipe was flexible stainless steel and the nominal diameter of that pipe was 15A. The flow rate of heating water circulation was 480 L/h and water circulation lasted for all day long. Temperatures, harvest yield by test beds were surveyed from Nov. 10, 2013 to Apr. 29, 2014. The temperature of crown spot for crown heating bed was at the range of $13.0{\sim}17.0^{\circ}C$ during the night and that of crown spot in control bed was at the range of $8.0{\sim}14.0^{\circ}C$. Also, the temperature of root zone for root zone heating bed was at the range of $18{\sim}21.0^{\circ}C$ and that of root zone in control bed was at the range of $13.0{\sim}15.0^{\circ}C$. The cumulative yield growth rate in earlier harvest period (from Dec. 20 to Mar. 15) of crown heating bed was 43% compared with that of control bed and the cumulative yield of crown plus root zone heating bed was 39 % and that of root zone heating bed was 39 %.