• Title/Summary/Keyword: Bed plant

Search Result 472, Processing Time 0.024 seconds

Treatment Characteristics of Sand Filtration and Microfiltration (MF) in Advanced Water Treatment (고도정수처리에서 사여과와 정밀여과의 유기물처리특성에 관한 연구)

  • Kim, Hyung-Suk;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • With a belief of high water quality production and less chemical usage, membrane technology including Microfiltration (MF), Ultrafiltration (UF), and Nanofiltration(NF) is being employed more and more in drinking water treatment process. However, due to higher energy consumption of UF and NF, MF is normally used for drinking water treatment especially in a plant of large scale. In this investigation, performance ofsand filtration and membrane filtration was compared regarding removal of various water quality parameters, such as TOC, DOC, KMnO4 consumption, THMFP, and HAAFP. Two lines of pilot plant have been operated, one of which line is a traditional advanced water treatment process which includes sedimentation, sand filtration, ozonation, and activated carbon, and the other line is an alternative treatment process which includes sedimentation with inclined plate, MF membrane, ozonation, and activated carbon. For the first about 4months of period, MF filtration showed similar or little bit higher performance than sand filtration. However, after about 4month later, sand filtration showed much higher performance in removing all parameters monitored in the investigation. It was found that sand filtration is a better option than MF filtration as far as microbial community is fully activated in sand filter bed.

Dynamic Simulation of Molten Carbonate Fuel Cell and Mechanical Balance of Plant (용융탄산염연료전지 및 주변기기의 동적시뮬레이션)

  • Sung, Taehong;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • This study aims to develop a simulation bed for the mechanical balance of plants of high temperature fuel cells such as molten carbonate fuel cells. For using fuel cells in transportation, the optimization of the balance of plants should be considered. In this study, the dynamic model of a molten carbonate fuel cell and the model's responses to inlet gas composition, pressure, flow rate, and stack temperature were analyzed. On/off simulation was performed for testing the dynamic model's feasibility. The simulation results are in reasonable agreement with the experimental results from published literatures.

Basic Study for Development of Denitrogenation Process by Ion Exchange(IV) -A Kinetic Study in Continuous Column and an Economic Analysis- (이온교환법에 의한 탈질소 공정개발의 기초연구(IV) -연속식 반응기에서의 속도론과 경제성 분석-)

  • Lee, Min-Gyu;Ju, Chang-Sik;Chae, Yong-Gon;Kim, Sung-Il;Lee, Dong-Hwan;Yoon, Tae-Kyung
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.261-266
    • /
    • 2000
  • A kinetic study for nitrate removal by anion exchange resin was performed using continuous column reactors. Kinetic approach from the packed bed showed the reaction rate constant k$_1$ was 0.07~0.17 $\ell$/mgㆍhr and maximum exchange quantity q$_{o}$ was 27.75~31.81 mg/g. The results from the continuous column well agreed with that from the batch reactor. An economic analysis of the water treatment plant by anion exchange resin with a regenerating system was performed to design plant and process. Based on the treatment of 20 mg/$\ell$ nitrate-contained wastewater of 10,000 gallons per day to 2 mg/$\ell$, total capital cost and total annual cost are estimated to be 836 million wons and 211 million wons, respectively.y.

  • PDF

Estimation of energy self-sufficiency in municipal wastewater treatment plant using photovoltaic power simulated by azimuth and hydrophilic coating (방위각과 초친수코팅에 따른 태양광발전량 시뮬레이션과 하수처리장 에너지자립율 산정)

  • An, Young-Sub;Kim, Sung-Tae;Kang, Ji-Hoon;Chae, Kyu-Jung;Yoon, Jong-Ho
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.133-138
    • /
    • 2011
  • This paper presents energy self-sufficiency simulated in municipal wastewater treatment plants (WWTPs) by adopting solar energy production systems that were simulated by varying azimuth and super-hydrophilic coating on the surface of photovoltaic (PV). Relative to the national average energy consumption in WWTPs, the employment of 100 kW PV system was simulated to achieve 2.75% of energy self-sufficiency. The simulated results suggested that the installation of PVs toward South or Southwest would produce the highest energy self-sufficiency in WWTPs. When super-hydrophilic coating was employed in the conventional PV, 5% of additional solar energy production was achievable as compared to uncoated conventional PV. When 100 kW of PV system was installed in a future test-bed site, Kihyeung Respia WWTP located in Yongin, South Korea, the energy self-sufficiency by solar power was simulated to be 1.77%. The simulated solar power production by azimuth and super-hydrophilic coating will be useful reference for practitioners in designing the solar PV systems in the WWTPs.

A Study of Rehabilitation for Limestone Quarry near the Baekdudaegan Mountains (2) - In Case Study for Planting Seedlings Experiment on Okke Quarry - (백두대간에 인접한 석회석 광산의 식생복구 연구 (2) - 묘목식재 방법에 의한 옥계 광산복구 시험시공 사례 -)

  • Kim, Kyunghoon;Kim, Haksung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.117-125
    • /
    • 2012
  • The objective of this study was to investigate the possibility of planting seedlings for quarry rehabilitation. To achieve the objective, the experiment was designed for rehabilitation of quarry with planting seedlings and seeding types. Planting seedlings were categorized as target species, accompanied species and pioneer species. The study was conducted in limestone quarry (Lafarge Halla Cement Inc.) near the Baekdudaegan Mountains at Okke, Kangwon-do. The experimental planting bed was set in 2007 and field monitoring was carried out from 2007 to 2011. As the result of experiment, it was found that the early-phase pattern for surveyed species to establish was affected by the planting and seeding types. As years after planting and seeding, the percent of plant coverage also increased up to 90%. The methods of mixed planting and seeding were good for species diversity, but the growing of seedlings were affected by seeding plants. Accompanied species and pioneer species were superior to target species during first 2 years, but target species has gained predominance during last 2 years. The quality maintenance should be carried out annually to attain the goal of rehabilitation.

A Study on the Characteristics of Pollution Load in Biomass Power Plant with Ammonium Sulfate Injection (황산암모늄 주입시 바이오매스 발전소의 오염부하 특성 연구)

  • Lee, Chang-Yeol;Kim, Sung-Hoo;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.640-646
    • /
    • 2018
  • Biomass-fired power plants produce electricity and heat by burning biomass in a boiler. However, one of the most serious problems faced by these plants is severe corrosion. In biomass boilers, corrosion comes from burnt fuels containing alkali, chlorine, and other corrosive substances, causing boiler tube failures, leakages, and shorter lifetimes. To mitigate the problem, various approaches implying the use of additives have been proposed; for example, ammonium sulfate is added to convert the alkali chlorides (mainly KCl) into the less corrosive alkali sulfates. Among these approaches, the high temperature corrosion prevention technology based on ammonium sulfate has few power plants being applied to domestic power plants. This study presents the results obtained during the co-combustion of wood chips and waste in a circulating fluidized bed boiler. The aim was to investigate the characteristics of pollution load in domestic biomass power plants with ammonium sulfate injection. By injecting the ammonium sulfate, the KCl content decreased from 68.9 to 5 ppm and the NOx were reduced by 18.5 ppm, but $SO_2$ and HCl were increased by 93.3 and 68 ppm, respectively.

Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii

  • Yun, Yeong-Bae;Um, Yurry;Kim, Young-Kee
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.472-481
    • /
    • 2022
  • Brown blotch disease, caused by Pseudomonas tolaasii, is one of the most serious diseases in mushroom cultivation, and its control remains an important issue. This study isolated and evaluated pathogen-specific bacteriophages for the biological control of the disease. In previous studies, 23 varieties of P. tolaasii were isolated from infected mushrooms with disease symptoms and classified into three subtypes, Ptα, Ptβ, and Ptγ, based on their 16S rRNA gene sequences analysis and pathogenic characters. In this study, 42 virulent bacteriophages were isolated against these pathogens and tested for their host range. Some phages could lyse more than two pathogens only within the corresponding subtype, and no phage exhibited a wide host range across different pathogen subtypes. To eliminate all pathogens of the Ptα, Ptβ, and Ptγ subtype, corresponding phages of one, six, and one strains were required, respectively. These phages were able to suppress the disease completely, as confirmed by the field-scale on-farm cultivation experiments. These results suggested that a cocktail of these eight phages is sufficient to control the disease induced by all 23 P. tolaasii pathogens. Additionally, the antibacterial effect of this phage cocktail persisted in the second cycle of mushroom growth on the cultivation bed.

Performance test of double swirl burner for the development of pilot scale compact gasifier (컴팩트 석탄 가스화기 개발을 위한 이중선회버너 운전 평가)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Chung, Seok-Woo;Jung, Woo-Hyun;Yoo, Sang-Oh;Lee, Do-Yeon;Yun, Yongseung;Lee, Jin-Wook;Kim, Gyoo-Tae;Yi, Min-Hoe
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.96-104
    • /
    • 2013
  • Coal gasification is considered as one of the best alternatives among clean coal technology and new concept next generation technologies are under being developed to achieve low cost as well as high efficiency. In this study we have developed double swirl multi-burner as part of the development of low cost compact gasifier. We installed new concept multi-burner with pulverized coal distributor to the body of existing gasifier for burner test. Gasification test was performed under the condition of $6.4{\sim}7.2kg/cm^2$ and $1170{\sim}1300^{\circ}C$ by using Indonesian ABK (sub-bituminous) coal to get operation condition of new concept multi-burner. Our interest was focused to ensure a stable operating condition rather than the gasifier performance evaluation. As a result, we were able to achieve the carbon conversion of 84% and the cold gas efficiency of 52.1% at the stable operating conditions.

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves (다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성)

  • Yoon, Ji-Hwan;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7990-8000
    • /
    • 2015
  • Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.

Characteristics of $H_2$/CO ratio control of syngas by waste gasification (폐기물 가스화 합성가스의 $H_2$/CO 생산비 제어 특성)

  • Gu, Jae-Hoi;Kim, Su-Hyun;Kim, Mun-Hyun;Choi, Jong-Hyea;Heo, Su-Jung;Yoon, Ki-Soo;Kim, Soung-Hyoun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.475-478
    • /
    • 2008
  • The 3 ton/day-scale pilot plant consists of waste press, feed channel, fixed bed type gasification & melting furnace, quench scrubber, syngas refinery facility and flare stack. $H_2$/CO ratio of gasification syngas using the solid waste and sludge in the 3 ton/day gasifier showed about 1. Gasification melting furnace was operated $1,300{\sim}1,600^{\circ}C$. $H_2$/CO ration control system was obtained $H_2$/CO ratio 2 and 3.

  • PDF