• Title/Summary/Keyword: Bearing surface

Search Result 903, Processing Time 0.027 seconds

Surface Texturing for Low Friction Mechanical Components

  • Iqbal, K. Y. Mohd;Segu, D. Z.;Pyung, H.;Kim, J. H.;Kim, S. S.
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.287-293
    • /
    • 2015
  • Laser surface texturing (LST), a surface engineering modification, has been considered as one of the new processes used to improve tribological characteristics of materials by creating artificially patterned microstructure on the contact surface of mechanical components. In LST technology, the laser is optimized to obtain or manufacture the dimples with maximum precision. The micro-dimples reduce the coefficients of friction and also improve the wear resistance of materials. This study investigates the effect of dimple density is investigated. For this purpose, a ball-on-disc type tester is used with AISI 52100 bearing steel as the test material. Discs are textured with a 5% and 10% dimple density. Experimental work is performed with normal loads of 5 N, 10 N, and 15 N under a fixed speed of 150 rpm at room temperature. The effect of the textured surface is compared to that of the untextured one. Experimental results show that the textured surface yields lower friction coefficients compared to those of untextured surfaces. Specifically, the 10% dimple density textured surface shows better friction reduction behavior than the 5% dimple density textured sample, and has an 18% improvement in friction reduction compared with the untextured samples. Microscopic observation using a scanning electron microscope (SEM) shows that the major friction mechanisms of the AISI 52100 bearing steel are adhesion, plastic deformation, and ploughing.

EHL Analysis of Ball Bearing for Rough Surface With the FlowFactor (FlowFactor를 이용한 볼베어링의 탄성유체윤활해석)

  • Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.326-331
    • /
    • 2011
  • The purpose of this paper is to analyze and discuss the effects of surface roughness by comparing the elastohydrodynamic lubrication(EHL) analysis of smooth surface and rough surface as the ball bearing. In order to do this, The average flow model is adapted for the interaction of the flow rheology of lubricant and surface roughness. The average Reynolds equation and the related flow factor which describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure relations equations, the elastic deformation equation, and the force balance equation are solved simultaneously. The results show that effects of surface roughness on the film thickness and pressre distribution should be considered especially in EHL contact problems.

Improvement in Fatigue Life of Needle Roller Bearing (니들 롤러 베어링의 피로 수명 향상에 대한 연구)

  • Darisuren, S.;Amanov, A.;Pyun, Y.S.
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.237-243
    • /
    • 2019
  • Through this study, we investigate the effects of ultrasonic nanocrystal surface modification (UNSM) technology on the fatigue life of needle roller bearings. The fatigue life of untreated and UNSM-treated needle roller bearings is evaluated using a roller fatigue tester at various contact stress levels under oil-lubricated conditions. We can ascertain that the fatigue life of an UNSM-treated needle roller bearing was extended by approximately 34.3% in comparison with an untreated one, where the effectiveness of UNSM technology diminishes with increasing contact stress. The surface roughness and surface hardness of needle roller bearings before and after being treated by UNSM technology are compared and discussed to understand the role of UNSM technology in improving the fatigue life of needle roller bearings. In addition, a fractograph of the damaged bearings is observed using a scanning electron microscopy to shed light on the fracture mechanisms of bearings under different contact stress levels. We can therefore conclude that the application of UNSM technology to the needle roller bearings improves the fatigue life by reducing the friction coefficient and increasing the wear resistance; this may be attributed to a reduction in surface roughness from 0.5 to $0.149{\mu}m$ and an increase in surface hardness from 58 to 62 HRc.

An Experimental Study on Ram Pressure and THD Performance of Pivoted Pad Thrust Bearing (피봇식 주력베어링의 선단압력과 THD성능에 관한 실험적 연구)

  • 박홍규;김경웅
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • Effects of the ram-pressure on the THD-performance of pivoted pad thrust bearings are investigated experimentally. A sector-shaped tilting pad thrust bearing and a rotating disk are used. Temperature distribution on the disk surface as well as on the pad surface, distribution of the pressure generated within the fluid film, and the film thickness are measured continuously in the circumferential direction after thermal equilibrium is established. The ram-pressure is proportional to the mean pressure of oil film and to the rotational speed of the disk and affects the maximum pressure and the pressure distribution. The temperature rise on the mating surface of the disc and the pad, contacting with the oil film, is proportional to to the bearing load and the disk speed. The ram-pressure and the temperature rise on the disk surface are dominant factors that affect the THD-performance of pivoted pad thrust bearings.

Effect of TiN-Coating on a Punch on Surface Quality of a Cold Forging Automotive Bearing Shaft (냉간 단조용 펀치의 TiN 코팅처리에 따른 자동차 베어링축의 표면 영향에 관한 연구)

  • Kim H.J.;Lee S.W.;Kang S.M.;Joun B.Y.;Joun M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.143-147
    • /
    • 2004
  • In this paper, effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKD11 material in cold forging of an automotive bearing shaft and its related process found in a cold forging company ate selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool lift.

  • PDF

A Study on the Forging of wheel Bearing Hub by using Response Surface Methodology (반응표면분석법을 이용한 휠 베어링 허브 단조에 관한 연구)

  • Song, Yo-Sun;Yeo, Hong-Tae;Hur-Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.100-107
    • /
    • 2005
  • The objective of the study is to improve the quality of wheel bearing hub by the rigid-plastic finite element analysis and the response surface methodology. The rigid-plastic finite element codes, AFDEX-2D and DEFORM-3D, were used to analyze the two-dimensional and three-dimensional forging processes, respectively. The response surface analysis is used to find the minimum underfill by the variation of design variables such as the height of billet after upsetting and punch angles of blocker dies. The metal flow of forged product shows good agreement with the results from 2D and 3D analysis. Also, the quality of the wheel bearing hub has been improved by the optimization of design variables and the machining time has been reduced by the machining allowance.

SEM/EDX Analysis on the Composition and Surface Defect in a Pin Bushing Bearing for an Automotive Engine (자동차 엔진용 핀부싱 베어링의 SEM/EDX 이용 성분.결함분석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.195-200
    • /
    • 2007
  • This paper presents the friction induced scuffing and wear defects analysis of a pin bushing bearing based on the chemical composition using a scanning microscopy (SEM) and an energy dispersive X-ray analyzer (EDX). The SEM/EDX system, which may provide good information on the surface thermal defects and chemical compositions, provides impurities such as an aluminum, a silicon, a ferrous component and an oxygen, especially. The EDX measured results show that the oxygen may reduce the strength and a hardness of a pin busing, which may lead to a scuffing and a seizure on the rubbing contact surface. The current technology fabricated by a sintering for a pin bushing bearing should be modified or changed to reduce the oxygen composition and the impurities in pin bushing materials.

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.

A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing

  • Suh, Hyun-Seung;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearings are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the starting point of the wave relative to the applied load direction. The bearing performance is analyzed for various configurations and for both cases of smooth and wave member notation. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity ratios and load orientation.

  • PDF

A Parametric Study on the Characteristics of the Oil-Lubricated Wave Journal Bearing (오일윤활 웨이브 저어널 베어링의 특성해석)

  • 서현승;임윤철
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.100-107
    • /
    • 1998
  • A new bearing concept, the wave journal bearing, has been developed to improve the static and dynamic performance of a hydrodynamic journal bearing. This concept features a wave in bearing surface. Not only straight but also twisted wave journal bearing are investigated numerically. The performances of straight and twisted bearings are compared to a plain journal bearing over a wide range of eccentricity. The bearing load and stability characteristics are dependent on the geometric parameters such as the number of waves, the amplitude and the start point of the wave relative to the applied load direction. The wave journal bearing, especially for the twisted one, offers better stability than the plain journal bearing under all eccentricity and load orientation.