• 제목/요약/키워드: Bearing steel

검색결과 1,009건 처리시간 0.027초

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

디젤엔진용 클래드강의 소재개발에 관한 연구 (A Study on the Development of Clad Steel for Diesel Engine)

  • 하만경;황영모;박후명;전재억;김수광
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.13-19
    • /
    • 2005
  • Metal Bearing's research that use the clad steel had led in advanced country. Metal Bearing that is produced by domestic companies is ship, vehicles, development equipment and plant equipment. This is Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation. Cast White Metal Lining Bearing is foreseen to be used widely on industry whole in the future. Cast White Metal Bearing is product that need precision processing. But the technique is generalized widely. So an advanced country is depending on import from a developing country that price is cheaper than itself manufacture. it is judged that high added value creation by deepening of price competition is difficult. Therefore need product development of new form and is changing to Trimetal Bearing parts. Trimetal Bearing is high quality technique that do compression junction to thin plates of special object on the Back Metal. Therefore, this research developed Trimetal bearing's materials.

  • PDF

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.

합성접합부에서 지압내력 평가식 (Evaluation of Bearing Strength for Composite Joint)

  • 김병국;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.347-352
    • /
    • 2002
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope one of details to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. Local bearing tests with specimens about 1/3 of the actual concrete column size were performed applying uniform load through steel plate with 100$\times$110mm size. Test results show that specimens with the bearing reinforcement detail developed in this study enhanced the bearing strength by 1.71~3.02 compared to concrete cylinder strength.

  • PDF

중심 축하중을 받는 H형강 기둥 베이스플레이트의 설계에 대한 연구 (A Study on the Design of H-Section Steel Column Baseplate under Concentric Loadings)

  • 이승준;이재한
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.717-726
    • /
    • 2005
  • 본 연구에서는 중심 축하중을 받는 H형강 기둥의 베이스플레이트의 지압응력의 분포와 설계에 대하여 조사하였다. 일반적으로 강구조 기둥의 베이스플레이트는 지압응력이 등분포하다고 가정하고 그 크기와 두께를 결정한다. 그러나 중심 축하중이 적으면 베이스플레이트의 크기도 작아지고 두께도 얇아지며 지압응력은 등분포하게 되지 않으며 기둥단면의 하부에 집중된다. 본 연구에서는 실험적 방법과 해석적 방법으로 지압응력의 분포에 대하여 조사하고 그 결과를 이용하여 설계법을 검토하였다. 7개의 H형강 기둥 베이스플레이트 시험체를 제작하여 실험을 수행하였다. 또한 유한요소해석프로그램인 ANSYS를 이용하여 베이스플레이트의 지압응력의 분포를 해석하였다. 연구결과 지압응력은 기둥단면의 하부에 집중되고 등분포하지 않아 강구조 한계상태 설계기준에서의 등분포한 지압응력의 가정은 적정치 않았다.

중심 압축력을 받는 각형강관기둥 베이스플레이트의 지압응력과 설계에 대한 연구 (Bearing Pressure and Design of Rectangular Steel Tubular Column Baseplate under Concentric Loadings)

  • 이승준;김정현
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.463-470
    • /
    • 2004
  • 본 연구에서는 중심축하중을 받는 각형강관기둥의 베이스플레이트의 지압응력의 분포와 설계에 대하여 조사하였다. 일반적으로 강구조 기둥의 베이스플레이트는 지압응력이 등분포하다고 가정하고 그 크기와 두께를 결정한다. 그러나 축하중이 적으면 베이스플레이트의 크기도 작아지고 두께도 얇아지며 지압응력은 등분포하게 되지 않으며 기둥단면의 하부에 집중된다. 본 연구에서는 실험적 방법과 해석적 방법으로 지압응력의 분포에 대하여 조사하고 그 결과를 이용하여 설계법을 검토하였다. 4개의 각형강관기둥 베이스플레이트 시험체를 제작하여 실험을 수행하였다. 또한 유한요소해석프로그램인 ANSYS를 이용하여 베이스플레이트의 지압응력의 분포를 해석하였다. 연구결과 축하중이 적은 경우 지압응력은 기둥단면의 하부에 집중되고 등분포하지 않으므로 유효폭의 개념을 이용하여 베이스플레이트를 설계하는 방법이 적절함을 나타내었다.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

보론 첨가강에서 연주 냉각속도가 고온연성에 미치는 영향 연구 (주편 코너 크랙 발생 방지 방안 확보 연구) (Effect of cooling rate on the hot ductility of boron bearing steel during continuous casting (Study for prevention of corner crack on continuous casting slab))

  • 조경철;구양모;박중길
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.329-337
    • /
    • 2008
  • During the continuous casting of boron-bearing steel, the corner cracks on the slab are formed by deformation with low strain rate and rapid cooling at the unbending temperature within the range of 800- $1000^{\circ}C$. Especially, the rapid cooling in the corner of slab during the continuous casting leads to as corner cracking. Therefore, in this study, the hot tensile tests applied to the different cooling rates were taken into account in order to study the effect of cooling rate on the hot ductility of boron-bearing steel. The results revealed that increasing cooling rate deteriorate the hot ductility of boron- bearing steel. Rapid decreasing of the hot ductility is caused by formation of a film-like ferrite and precipitate at the austenite grain boundaries. The morphology of the precipitates in the boron-bearing steel was monitored by PTA (Particle Tracking Autoradiography) and TEM, we observed MnS and BN compound and their morphology was quite different depending on the cooling rates. When the cooling rate is increased, rodshape MnS and BN precipitates can be formed along the austenite grain boundaries. It can cause that weakening the boundary region and decreasing the hot ductility of boron-bearing steel.

Bearing Strength of Hybrid Coupled Shear Wall Connections

  • Park Wan-Shin;Yun Hyun-Do
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.1065-1074
    • /
    • 2005
  • Due to lack of information, current design methods to calculate bearing strength of connections are tacit about cases in which hybrid coupled walls have connection details of stud bolts and horizontal ties. In this study, analytical study was carried out to develop model for calculating the connections strength of embedded steel section. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i. e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The results of the proposed equations in this study are in good agreement with both our test results and other test data from the literature.

Shear behavior of steel reinforced concrete shallow floor beam: Experimental and theoretical study

  • Chen, Yang;Ren, Chong;Yuan, Yuqing;Yang, Yong
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.677-684
    • /
    • 2022
  • This paper reports experimental investigation on shear behavior of steel reinforced concrete (SRC) shallow floor beam, where the steel shape is embedded in concrete and the high strength bolts are used to transfer the shear force along the interface between the steel shape and concrete. Six specimens were conducted aiming to provide information on shear performance and explore the shear bearing capacity of SRC shallow floor beams. The effects of the height of concrete slab, the size and the type of the steel section on shear performance of beams were also analyzed in the test. Based on the strut-and-tie model, the shear strength of the SRC shallow floor beam was proposed. Experimental results showed that composite shallow floor beam exhibited satisfactory composite behavior and all of the specimen failed in shear failure. The shear bearing capacity increased with the increasing of height of concrete slab and the size of steel shape, and the bearing capacities of beam specimens with castellated steel shape was slightly lower than those of specimens with H-shaped steel section. Furthermore, the calculations for evaluating the shear bearing capacity of SRC shallow floor beam were verified to be reasonable.