• Title/Summary/Keyword: Bearing simulation

Search Result 509, Processing Time 0.028 seconds

A Numerical Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.146-153
    • /
    • 1999
  • A numerical dynamic simulation is necessary to investigate the capacity of the HDD. The slider surface become more and more complicated to make the magnetized area smaller and readback signal stronger. So a numerical dynamic simulation must be preceded to develop a new slider in HDD. The dynamic simulations of air-lubricated slider bearing have been peformed using FIFD(Factored Implicit Finite Difference) method. The governing equation, Reynolds equation Is modified with Fukui and Kaneko model(FK model) which includes the first and the second-order slip. The equations of motion for the slider bearing are solved simultaneously with the modified Reynolds equation for the case of three degrees of freedom. The slider transient response for disk step bump and slider impulse force is given for various case and for iteration algorithm and new algorithm.

  • PDF

A Simulation for the Critical Speeds of a Geared Rotor System with Time Varying Mesh Stiffnesses and Bearing Flexibilities. (시 변화 물림 강성도와 베어링 유연도를 고려한 기어-로터의 위험 속도 시뮬레이션)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.39-48
    • /
    • 1999
  • A finite element model of geared rotor system with flexible bearings were used to simulate the critical speeds and to investigate the effects of bearing coefficients on the dynamic behaviors of the systems. The finite element model includes the effects of tooth mesh stiffness, gyroscopic moment, rotary inertia, shear, and torque of the shaft. The gear mesh was modelled as a pair of rigid disks connected by a spring of time varying stiffness. The time varying mesh stiffness results in the abrupt change of the critical speeds of spur geared systems. As the bearing stiffness increases, critical speeds increase rapidly in case of stiff shafts, compared with flexible shafts.

  • PDF

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

Characteristics Analysis of Sealless Cylinders (씰리스 실린더 특성 해석에 관한 연구)

  • 서현석;김동수;유찬수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.824-827
    • /
    • 2003
  • The study of Sealless Cylinder is presented. The cylinder has a piston with air bearing. The piston has a partly cylindrical and partly conical shape. The description of system geometry is follows by the flow rate equations. Then pressure distribution and Bearing force equations are derived. Several non dimensional parameters are suggested. The relationship among bearing force, leakage flow and geometry of the bearing is investigated by simulation. And determination method for optimal design of sealless cylinder is given. A prototype of seatless cylinder which had rod bearing with four pockets, five pockets, and six pockets was built respectively.

  • PDF

Estimation of the Unmeasured Unbalance Responses and Identification of Bearing Parameters in Flexible Rotor-Bearing Systems (회전체 베어링계의 불균형응답 간접추정과 베어링 매개변수 규명)

  • 홍성욱;이종원
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.193-202
    • /
    • 1992
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor bearing systems because of it usefulness in balancing and diagnosis as well as identification of parameters involved in rotor bearing systems. However some unbalance responses are not measurable due to the fact that rotor bearing systems are often encapsulated by fixtures or safety protectors. In the present paper, an efficent estimation scheme for unmeasured unbalance responses in rotor bearing systems is developed. The fundamental fearture of the proposed method is characterized by the linear formulae to estimate the unbalance responses from the measured unbalance responses and the finite element auxilliary model equation which is constructed to be identical to the prototype excluding the uncertain parameters such as bearing coefficients. The identification formulae for bearing parameters are also derived by using the unbalance response and the finite elements auxiliary model. Simulation is provided to verify the effectiveness of the proposed method.

  • PDF

Dynamic response of a HDD pivot ball bearing acted by Hertzian contact force (Hertzian contact force에 의한 HDD pivot ball bearing의 동적 반응 분석)

  • Yoon, Joo Young;Park, No-Cheol;Lim, Gunyeop;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.993-993
    • /
    • 2014
  • Increasing the density magnetic recording of a hard disk drive needs to improve position control of a slider. We have troubles analyzing position of a slider by nonlinear property of pivot ball bearing. Many researches analyze a hard disk drive to change pivot ball bearing part from balls to springs. Pivot ball bearing operates by rotation and movement of balls. This study considers Hertzian contact force when balls contact with outer race to analyze nonlinear movement of a ball bearing. Experiment of this study measures movement of a circular center of a pivot ball bearing. We also verify the simulation results and the experiment results.

  • PDF

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.

Analysis on characteristics of vacuum preloaded air bearing (진공 예압형 공기베어링의 특성 해석)

  • 김경호;박천홍;이후상;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.355-358
    • /
    • 2003
  • This paper presents characteristics of vacuum preloaded porous air bearing. Pressure distribution of a porous pad and vacuum pocket are calculated. And load capacity and stiffness of the bearing are analyzed with various vacuum parameters, that is. clearance height. tube diameter, tube length. pumping speed of vacuum pump, vacuum pocket to porous pad area ratio. From the simulation results, optimum clearance for best performance can be selected adjusting these parameters, especially tube diameter which is the most dominant source.

  • PDF

Bearing tracking algorithm appropriate for underwater environment (수중환경에 적합한 방위각 추적 알고리즘)

  • 허용석;김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.558-563
    • /
    • 1992
  • Bearing information of target is used critically for target tracking in underwater environment. In passive sonar, target bearing measurements are obtained by processing the acoustic signal emanating from the target. PDA tracking algorithm is usually applied in this case since bearing measurements have several peaks due to interference with other acoustic sources or reflections from underwater media. In this paper, we propose a modified PDA algorithm adopting new probabilistic distributions of the number, position, and amplitude of peaks based on the analysis of real data. This algorithm is tested on real and artificially generated data. The computer simulation result shows improvement of the tracking performance.

  • PDF