• Title/Summary/Keyword: Bearing simulation

Search Result 509, Processing Time 0.085 seconds

A Study on the Bearing Characteristics of Air Bearing System According to the Thermal Effects (공기 정압 베어링에서 열의 영향에 따른 베어링 특성에 관한 연구)

  • 이종렬;김보언;안지훈;이득우
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2001
  • Generally, it is said that the heat generation of air bearing is negligible. But the air bearing using at the built-in spindle is different from the general air bearing itself because of the thermal effects from the spindle motor and high-speed conditions. In this paper, in order to analysis the characteristics of air bearing by the heat, We made easy -heating-bearing-system (EHBS) and hard-heating-bearing-system (HHBS) and could identify the changes between the two bearing systems from the experiments and simulation. When spindle system reached at thermal steady-state, the changes means that the stiffness of air bearing becomes change due to the clearance change between bearing and journal. It is shown that the temperature rise and thermal effects to cause the thormal expansions have to be considered when designing air spindle system.

A Study on the Aperiod Bearing Only TMA (비주기 Bearing 표본입력에 대한 BOTMA 연구)

  • 이동훈
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.30-40
    • /
    • 2001
  • This paper presents a study on the design and simulation of bearing only target motion analysis to enhance the TMA capability using SONAR in underwater environment. A bearing only target motion analysis algorithm using aperiod bearing input signals has been developed and simulated in the MATLAB.

  • PDF

Effects of Design Parameters on the Thermal Performance of a Brushless DC Motor (BLDC 모터의 열적 성능에 대한 설계 인자의 영향)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • A numerical simulation of brushless DC motor is performed to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet. Recirculation zone exists in the tiny interfaces between windings. The flow separation causes poor cooling performance in bearing part and therefore the redesign of the bearing groove is required. The design parameters such as the inlet location, geometry and bearing groove threshold angle have been selected in the present simulation. As the inlet location moves inward in the radial direction, total incoming flow rate and heat transfer rate are increased. Total incoming flow rate is increased with increasing the inlet inner length. The effect of the bearing groove threshold angle on the thermal performance is less than that of other design parameters.

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts (추진축이 센터베어링으로 지지된 차량 구동계의 출발시 진동해석)

  • 이창노;김효준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1043-1048
    • /
    • 2002
  • This paper considers the vibration problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we develop an one d.o.f model which describes the radial motion of the center bearing. We find out the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the joint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

  • PDF

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts Up (센터 베어링으로 지지된 추진축을 갖는 구동계의 차량 출발시 진동해석)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.929-934
    • /
    • 2002
  • This paper considers the vibration Problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we developed an one d.o.f model which describes the radial motion of the center bearing. We found out that the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the feint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

Simulation and Experimental Analysis of Magnetic Levitation Relative Stability for the Flywheel Energy Storage (플라이휠 에너지 저장장치 자기부상 안정성 시뮬레이션 및 실험분석)

  • Park, Byeong-Cheol;Jung, Se-Yong;Han, Sang-Chul;Lee, Jeong-Phil;Han, Young-Hee;Park, Byung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1605-1610
    • /
    • 2010
  • In this paper, the relative stability of magnetic bearing system for the flywheel energy storage is evaluated using both simulation and experimental analysis. We make the simulation model for the magnetic bearing flywheel system using the rigid body shaft model. According to international standard ISO 14839-3, We experimentally analyzed the relative stability of magnetic bearing system. Additionally using both the simulation model and experimental tests, Phase margin and Gain margin is acquired through Nyquist plot.

A Robust Control of Horizontal-Shaft Magnetic Bearing System Using Linear Matrix Inequality Technique (선형행렬부등식 기법을 이용한 횡축형 자기 베어링 시스템의 로버스트 제어)

  • 김창화;정병건;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.321-330
    • /
    • 2001
  • Magnetic bearing system is frequently used for high-speed rotating machines because of its frictionless property. But the magnetic bearing system needs feedback controller for stabilization. This paper presents a robust controller design by using linear matrix inequality for magnetic bearing system which shows the control performance and robust stability under the physical parameter perturbations. To the end, the validity of the designed controller is investigated through computer simulation.

  • PDF