• Title/Summary/Keyword: Bearing resolution

Search Result 77, Processing Time 0.027 seconds

Fabrication and Performances Tests of the Optical Fiber Position Sensor for Application to Spindle State Monitoring (주축 상태 모니터링 용 광파이버 변위센서 제작 및 성능평가)

  • Shin Woo-cheol;Hong Jun-hee;Park Chan-gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.37-44
    • /
    • 2005
  • This paper presents fabrication techniques of the optical fiber position sensor (or spindle state monitoring. These include selection of components such as optical fibers, a laser-diode, a photo-diode, and op-amp IC of the signal process circuit. We also describe electric runout problem. The fabricated sensor has a linearity of $1.7\%$ FSO in the air gap range $0.1\~0.6mm$, a resolution of $0.37{\mu}m$ and a bandwidth of 6.3kHz. Finally, we have successfully operated a magnetic bearing spindle system using the sensors.

Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1553-1561
    • /
    • 2007
  • The new type of heterometallic chiral polymer salen complexes have been synthesized and it has been found that group 13 metal salts (AlCl3, GaCl3 and InCl3) combined to cobalt salen unit played the crucial role in the asymmetric kinetic resolution of racemic epoxides. Polymeric salen catalysts showed very high reactivity and enantioselectivity for the asymmetric ring opening of terminal epoxide with diverse nucleophiles. They provide the enantiopure useful chiral intermediates such as chiral terminal epoxides and α -aryloxy alcohols in one-step process. An efficient methodology for providing very high enantioselectivity can be achieved in the synthesis of valuable chiral building blocks via our catalytic system by combination of various asymmetric ring opening reactions.

Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond

  • Yang, Taehyun;Park, Celine;Rah, Sang-Hyun;Shon, Min Ju
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.16-25
    • /
    • 2022
  • Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.

나노위치제어용 선형 모터의 거동 분석

  • Seol Jin-Su;Lee U-Yeong;Im Gyeong-Hwa
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.125-128
    • /
    • 2005
  • The equipments in semi-conductor, display and measurement fields require high precision and resolution positioning technology. High positioning control can be carried out by using linear motors with little vibration, backlash and friction. In this paper, the acceleration patterns of the moving Part are analyzed to obtain the optimum pattern which leads to the less vibration reduction of equipment. In addition, the effect of friction force in guide rail on position control accuracy is investigated to identify possibility of using current bearing system for nano-positioning control.

  • PDF

Development of linear measuring system (선형측정장치 개발)

  • Eom, Tae-Bong;Kim, Goo-Young;Chung, Myung-Sai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.104-108
    • /
    • 1993
  • The linear length measurements are most frequently performed and should be most accurate among other parts in dimensional metrology. We developed the linear measuring system using a laser interferometer to improve the accuracy and to shorten the calibration time. The uncertainty of the system is 0.01 .mu. for 500mm steel gage block. The range of the measurement and resolution of the system are 1000mm and 0.01 .mu. m, respectively.

  • PDF

Study on the enhancement of data quality from shallow water seismic reflection survey (천해저 지반조사를 위한 수면 탄성파 반사법 탐사자료의 분해능 향상 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.799-806
    • /
    • 2004
  • Recently, as the forerunner in establishing the Northeast Asia's logistics base, a lot of marine engineering works such as new ports and container terminals, extension of old ports, new bridges, land reclamation etc. have been progressed. Parallel to it, there is also an increasing demand for improving the safety of construction. In this situation, high resolution seismic reflection profiling can be well used, attempting to classify rocks and sediments under water, if possible, to delineate the distribution of grain sizes in sediments not only for calculating the cost of removing sediments from harbour's channels, but also for estimating the bearing capacities for bridge or port construction. However, the results from the corresponding reflection survey that has been in operation in our country can not be effectively used for engineering purposes mostly due to the insufficient resolution. Thus. in this paper, two innovative strategies are introduced to enhance resolution. The one deals with a newly designed exploration barge that will help reduce several kinds of noises encountered electrically or operationally. The other is associated with an establishment of optimum measuring system comprising e.g. a specially devised hydrophone with a combination of 7 piezoelectric elements. Field experiments performed at Busan harbour are illustrated. The quality of acquired data was thereby fundamentally improved in comparison with that obtained at the same time in a conventional way.

  • PDF

Enhancement of Bearing Estimation Performance at Endfire Using Cardioid Inverse Beamforming (좌우분리 역빔형성 기법에 의한 센서 축방향의 방위탐지 성능 향상)

  • 강성현;김의준;윤원식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • In order to detect the precise port/starboard direction of arrival of target signal in real noisy ocean environments, Inverse beamforming (IBF) algorithm is surveyed theoretically and the detection performances of IBF are analyzed with simulations. Cardioid Inverse beamforming algorithm was proposed for port/starboard discrimination and the performance was studied with simulations. It is shown that IBF has a 3dB array gain advantage over Conventional beamforming (CBF) under ideal conditions. This 3 dB advantage is proven theoretically and illustrated with simulations. The fact that the IBF beamwidth is narrower than the CBF beamwidth by a factor of 0.68 proves the performance of defection and spatial resolution improvement. Comparing the simulation results of Cardioid Inverse beamforming and Conventional Cardioid beamforming, it is shown that Cardioid Inverse beamformer has enhanced performance in minimum detection level, detection accuracy and resolution. Due to the results of moving target bearing detection test in endfire, it is shown that Cardioid Inverse beamformer has better performance, comparing the Conventional Cardioid beamformer.

  • PDF

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

Bearing fault detection through multiscale wavelet scalogram-based SPC

  • Jung, Uk;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.377-395
    • /
    • 2014
  • Vibration-based fault detection and condition monitoring of rotating machinery, using statistical process control (SPC) combined with statistical pattern recognition methodology, has been widely investigated by many researchers. In particular, the discrete wavelet transform (DWT) is considered as a powerful tool for feature extraction in detecting fault on rotating machinery. Although DWT significantly reduces the dimensionality of the data, the number of retained wavelet features can still be significantly large. Then, the use of standard multivariate SPC techniques is not advised, because the sample covariance matrix is likely to be singular, so that the common multivariate statistics cannot be calculated. Even though many feature-based SPC methods have been introduced to tackle this deficiency, most methods require a parametric distributional assumption that restricts their feasibility to specific problems of process control, and thus limit their application. This study proposes a nonparametric multivariate control chart method, based on multiscale wavelet scalogram (MWS) features, that overcomes the limitation posed by the parametric assumption in existing SPC methods. The presented approach takes advantage of multi-resolution analysis using DWT, and obtains MWS features with significantly low dimensionality. We calculate Hotelling's $T^2$-type monitoring statistic using MWS, which has enough damage-discrimination ability. A bootstrap approach is used to determine the upper control limit of the monitoring statistic, without any distributional assumption. Numerical simulations demonstrate the performance of the proposed control charting method, under various damage-level scenarios for a bearing system.