• Title/Summary/Keyword: Bearing pile

Search Result 603, Processing Time 0.026 seconds

Evaluation of Field Applicability of Helical Pile Using Hexagon Joints (육각형 이음부를 이용한 회전관입말뚝의 현장적용성 평가)

  • Jeong, Sangguk
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.635-648
    • /
    • 2020
  • Performance improvement of helical piles in static load tests using hexagon joints that do not require welding or bolting was investigated. Two sites were selected for pile field tests to evaluate their bearing capacity. Static and pull-out load tests were undertaken to assess the method for estimating bearing capacity. The field tests indicated that the bearing capacity of the gravity grout pile was ≥600 kN in the static load test, consistent with the AC 358 Code. The non-grout pile had a bearing capacity of ≤600 kN, suggesting that gravity grouting is required. Field pile load-test results were used to establish the bearing capacity equation, based on a small number of helical pile.

Analysis on Behavior of Vertically Loaded Single Pile included in Pile Group (무리말뚝을 구성하는 외말뚝의 연직방향 하중지지 거동분석)

  • Lee, Seung-Hyun;Kim, Byoung-Il;Yoo, Wan-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4863-4868
    • /
    • 2012
  • Static pile load tests were conducted on the two piles which comprised group pile installed in sand and the test results were compared with those obtained from load transfer method. Predicted load bearing capacity of the pile which locates center portion of the group pile was less than that from the load test and the reason is thought to be the densification of the soil due to the installation of the group pile. Predicted pile capacity of the API method, Coyle and Sulaiman method were 77%, 90% of the bearing capacity obtained from the load test, respectively. Comparing ultimate bearing capacities of the pile locating at the edge of the group pile, those predicted by the API method, Coyle and Sulaiman method were 1.1 times, 1.3 times of the bearing capacity obtained from the pile load test, respectively.

Effects of Pile Diameter on the Plugging Rate and Bearing Capacity of Open -Ended Piles (말뚝직경이 재단말뚝의 폐색정도와 지지력에 미치는 영향)

  • Baek, Gyu-Ho;Kim, Yeong-Sang;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 1996
  • Model pile tests, using a calibration chamber in which the stress state and the relative density can be controlled, were performed in order to study the effects of pile diameter on the plugging rate and bearing capacity of open-ended pile. The model piles used in the test series were devised so that the bearing capacity of an open-ended pile could be measured out into three components. The test results showed that fully plugging depth of an open -ended pile increased with increase in pile diameter and soil density. Moreover, it was found that unit plug capacity decreased with increase in pile diameter, though the penetration ratio or plugging rate of piles was constant. However, the existing formulae for estimation of plug capacity give plug capacity which is constant or increased with increase in pile diameter, when penetration ratio or plugging rate of piles is equal. Thus, it is proposed that the effect of pile diameter as well as plugging rate on bearing capacity of pile must be considered in plug capacity estimation.

  • PDF

Behavior Characteristics of Helical Pile in Granite Residual Soil (풍화토 지반에 관입된 나선형 강관말뚝의 거동 특성)

  • Cho, Chunhee;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • The rotate penetration pile is a type of displacement pile: the surrounding soil is displaced when installing the pile, and the pile can exert a large bearing power and pullout force. In addition, it uses displaced soil method that does not generate slime, and its applications are increasing in foreign countries owing to the environmentally friendly characteristics such as small noise and vibration. However, mostly driven piles-which are directly driven to the ground, and bored pile- pre-fabricated piles are buried to prebored underground, are used; however, rotate penetration piles still have limited use. Most of the laboratory tests have been carried out until now to identify the support behavior after installation of piles and ground construction, the evaluating the support behavior is lacking due to the rotation intrusive process of the rotate penetration piles. Therefore, this study used indoor experiments simulating rotation intrusive process in weathered soil, to evaluate the bearing power behavior for the weathered soil, varying the diameter of the helical bearing plates, helical bearing plate spacing, number of the helical bearing plates, and helical bearing plate specifications. As the outcome of this study, the helical pile bearing power evaluation results, change in bearing power in accordance with main specifications, and review on the comparative analysis with the existing theories were provided.

Bearing capacity of large diameter PHC pile and large diameter composite pile (대구경 PHC말뚝 및 대구경 복합말뚝($\phi$1,000mm) 지지력 산정에 관한 연구)

  • Shin, Yun-Sup;Park, Jae-Hyun;Hwang, Ui-Seong;Cho, Sung-Han;Chung, Moon-Kyung;Lee, Jin-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.351-359
    • /
    • 2010
  • Large PHC piles with a diameter of 1,000mm or larger were recently introduced for the first time in Korea. This paper presents full-scale static and dynamic pile load tests performed on two 1,000mm PHC piles and two composite piles with steel pipe piles of the same diameter in the upper portion, installed by driving and pre-boring. The objectives of the tests include evaluating pile drivability, load-settlement relation, allowable bearing capacity, and the stability of mechanical splicing element for the composite pile(a.k.a. non-welding joint). The performance of the large diameter PHC piles were thought to be satisfactory compared to that of middle sized PHC piles with a long history of successful applications in the domestic and foreign markets.

  • PDF

Study on the Bearing Capacity of Helical Pile through Field Load Tests (현장재하시험을 통한 헬리컬파일의 지지력에 관한 연구)

  • Kwon, Gi-Ryeol;Jang, Jeong-Wook;Cho, Song-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.669-675
    • /
    • 2020
  • This research has focused on comparing the capacity predicted by the theoretical formula with the one measured by field load tests to examine characteristics of the bearing capacity of a helical pile. The helical pile is featured by a central shaft with one or more helical-shaped bearing plates. Being established by a small rotary attached to an excavator that applies toque, the helical piles can be readily constructed at narrow sites, especially in an urban area with relatively less noise than the others requiring driving and excavation. Although many cases of the helical pile constructions can be recently found, the bearing capacity of the pile has been limitedly studied. To this end, this contribution analyzes and presents comprehensive results of the ten field loading tests with an application of different parameters depending on joint condition and specification of the helical piles, and types of tests and grouting.

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

A Case Study of Post-Grouted Drilled Shaft in Weathered Formation (풍화대소켓 대구경 현장타설말뚝의 선단보강그라우팅 사례)

  • Kwon, Oh-Sung;Lee, Jong-Sung;Jung, Sung-Min;Lee, Kyung-Jun;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.415-426
    • /
    • 2010
  • Post-grouting for the drilled shaft is known to increase the end bearing capacity of pile 2~3 times higher by consolidating and reinforcing the disturbed ground containing slime around the pile end. However, the general design guideline for post-grouting has not been established yet in Korea. Especially in the domestic application, the post-grouting is employed just for repairing the pile with the unacceptable resistance rather than for increasing the design resistance of pile. Therefore, little is reported about the effect of post-grouting on the pile resistance itself. In this study, the effect of post-grouting on the resistance of drilled shafts installed in the weathered rock in Korea was estimated by performing the bi-directional load tests on the piles with and without the post-grouting. The test results presented that the initial slope of end bearing-base displacement curve in the pile with post-grouting was 4 times higher than that without post-grouting. At the acceptable settlement (1% of pile diameter), the end bearing capacities of piles with and without the post-grouting were estimated to be 12.0 MPa and 7.0 MPa, respectively, indicating that the post-grouting could increase the end bearing resistance of pile in weathered rock more than 70%.

  • PDF

Preliminary Load Tests for the Design of Large Diameter Drilled Shaft by Bi-directional Loading Method at Toe (대구경 현장타설말뚝의 설계를 위한 선단재하방법에 의한 시험말뚝 재하시험)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.89-98
    • /
    • 2005
  • Preliminary pile load tests for the design of large diameter drilled shaft were performed on two of reduced scale(D=1370mm) test piles. The maximum loads of 2350 tonf in each direction were applied using bi-directional hydraulic jacks(Osterberg Cell) at toe. Neither of the test piles yielded in terms of skin friction and end bearing. Comparisons of the test results with several methods that estimate pile capacity show that the method of Horvath and Kenney(1979) for skin friction and Zhang and Einstein(1998) for end bearing were most appropriate for the site. The test results were directly applied to pile design in case RQD of skin and toe was larger than that of the test pile. It is desirable, therefore, to consider not only unconfined compression strength but also rock mass properties(i.e. TCR, RQD) for skin friction and end bearing evaluation in the future.

  • PDF

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM

  • Hataf, Nader;Shafaghat, Amin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.547-567
    • /
    • 2015
  • This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.