• Title/Summary/Keyword: Bearing only SLAM

Search Result 3, Processing Time 0.017 seconds

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

A Simple Framework for Indoor Monocular SLAM

  • Nguyen, Xuan-Dao;You, Bum-Jae;Oh, Sang-Rok
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.62-75
    • /
    • 2008
  • Vision-based simultaneous localization and map building using a single camera, while compelling in theory, have not until recently been considered extensive in the practical realm of the real world. In this paper, we propose a simple framework for the monocular SLAM of an indoor mobile robot using natural line features. Our focus in this paper is on presenting a novel approach for modeling the landmark before integration in monocular SLAM. We also discuss data association improvement in a particle filter approach by using the feature management scheme. In addition, we take constraints between features in the environment into account for reducing estimated errors and thereby improve performance. Our experimental results demonstrate the feasibility of the proposed SLAM algorithm in real-time.

Mobile Robot Localization and Mapping using a Gaussian Sum Filter

  • Kwok, Ngai Ming;Ha, Quang Phuc;Huang, Shoudong;Dissanayake, Gamini;Fang, Gu
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.251-268
    • /
    • 2007
  • A Gaussian sum filter (GSF) is proposed in this paper on simultaneous localization and mapping (SLAM) for mobile robot navigation. In particular, the SLAM problem is tackled here for cases when only bearing measurements are available. Within the stochastic mapping framework using an extended Kalman filter (EKF), a Gaussian probability density function (pdf) is assumed to describe the range-and-bearing sensor noise. In the case of a bearing-only sensor, a sum of weighted Gaussians is used to represent the non-Gaussian robot-landmark range uncertainty, resulting in a bank of EKFs for estimation of the robot and landmark locations. In our approach, the Gaussian parameters are designed on the basis of minimizing the representation error. The computational complexity of the GSF is reduced by applying the sequential probability ratio test (SPRT) to remove under-performing EKFs. Extensive experimental results are included to demonstrate the effectiveness and efficiency of the proposed techniques.