• Title/Summary/Keyword: Bearing estimation

Search Result 324, Processing Time 0.028 seconds

Stationary Emitter Geolocation Based on NLSE Using LOBs Considering the Earth's Curvature (지구 곡률이 고려된 LOB를 이용하는 NLSE 기반의 고정형 신호원 위치추정)

  • Park, Byungkoo;Kim, Sangwon;Ahn, Jaemin;Kim, Youngmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.661-672
    • /
    • 2017
  • This paper introduces the NLSE(Nonlinear Least Squared Estimator) using curved LOBs(Line Of Bearings) considering the earth curvature based on sphere to avoid the map conversion distortion and minimize the estimation error. This paper suggests a method improving a performance of the NLSE using curved LOBs by using an ellipsoid model. The analysis of the simulation results shows that the NLSE using curved LOBs has better performance than the conventional triangulation method and can improve its performance using a suggested method.

A Sttudy on the Optimal estimation of the Fixed Position and Compterization of the Navigational Calculations (실측선위의 정도개선과 항법계산의 전산화에 관한 연구)

  • 하주식;윤여정
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.2
    • /
    • pp.1-45
    • /
    • 1983
  • This paper concerns the applications of the Kalman filter to navigation and the develment of computer programs of the navigational calculations. Methods to apply the Kalman filter to celestial fix, fix by cross bearing and cocked hat are proposed, and numerical simulations under various noise conditiions are conducted. The accuracy of the optimal positions obtained by the Kalman filter is compared with that of the fixed positiions by radial error method. In the case of celestial fix, an algorithm to estimate the optimal positions by using the linear Kalman filter is presented. The optimal positions by the Kalman filter are compared with the running fixes and with the most probable positions obtained from a single line of position. It is confirmed that the resutls of the proposed method are more accurate than the others. In practical piloting, bearings are generally measured intermittently and the measurement process is nonlinear. It is, therefore, difficult for us to apply the Kalman filter to fix by cross bearing. In order to be used in such an unfavorable case, the extended Kalman filter is revised and the aplicability of the revised extended Kalman filter is checked by numerical simulation under various noise conditions. In a cocked hat, an inside or outside fix is dependent only upon azimuth spread, if the error of each line of position is assumed to be equal both in magnitude and sign. A new technique of selecting a ship's position between an inside fix and an outside fix in a cocked hat by using fix determinant derived from the equation of three lines of position is also presented. The relations among the optimal position by Kalman filter, incentre (or excentre) and random error centtre of the cocked hat are discussed theoretically and the accuracy of the optimal position is compared with that of the others by numerical simulation.

  • PDF

Shallow ground treatment by a combined air booster and straight-line vacuum preloading method: A case study

  • Feng, Shuangxi;Lei, Huayang;Ding, Xiaodong;Zheng, Gang;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-141
    • /
    • 2021
  • The vacuum preloading method has been used in many countries for soil improvement and land reclamation. However, the treatment time is long and the improvement effect is poor for the straight-line vacuum preloading method. To alleviate such problems, a novel combined air booster and straight-line vacuum preloading method for shallow ground treatment is proposed in this study. Two types of traditional vacuum preloading and combined air booster and straight-line vacuum preloading tests were conducted and monitored in the field. In both tests, the depth of prefabricated vertical drains (PVDs) is 4.5m, the distance between PVDs is 0.8m, and the vacuum preloading time is 60 days. The prominent difference between the two methods is when the preloading time is 45 days, the injection pressure of 250 kPa is adopted for combined air booster and straight-line vacuum preloading test to inject air into the ground. Based on the monitoring data, this paper systematically studied the mechanical parameters, hydraulic conductivity, pore water pressure, settlement and subsoil bearing capacity, as determined by the vane shear strength, to demonstrate that the air-pressurizing system can improve the consolidation. The consolidation time decreased by 15 days, the pore water pressure decreased to 60.49%, and the settlement and vane shear strengths increased by 45.31% and 6.29%, respectively, at the surface. These results demonstrate the validity of the combined air booster and straight-line vacuum preloading method. Compared with the traditional vacuum preloading, the combined air booster and straight-line vacuum preloading method has better reinforcement effect. In addition, an estimation method for evaluating the average degree of consolidation and an empirical formula for evaluating the subsoil bearing capacity are proposed to assist in engineering decision making.

A Study on Non-contact Penetration and Rebound Measurement Device for Quality Control in Driven Piles (말뚝 시공관리를 위한 비접촉식 관입량 측정장치 활용에 관한 연구)

  • Seo, Seunghwan;Kim, Juhyong;Choi, Changho;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.97-106
    • /
    • 2022
  • The domestic auger-drilled pile method generally manages the driving penetration (set) value with the final stage of construction. The penetration value has been estimated by manual measurement for a long time. The automation technology is yet to be applied due to workability and high-cost limitations, despite safety issues and lack of reliability in measured results. In this study, a non-contact pile penetration measurement device was developed. Further, the field performance was verified by comparing the measurements with a conventional automation device. In addition, the on-site field quality control method was analyzed using the penetration measuring device. The field experiments confirmed that more reliable bearing capacity estimation could calculate the dynamic damping coefficient and the modified Hiley formula with the developed device. Furthermore, it can be used for pile construction management from the bearing capacity viewpoint, even for piles not subjected to dynamic load tests. 

Ground Test of Docking Phase for Nanosatellite (초소형위성 지상 환경 도킹 시험)

  • Kim, Hae-Dong;Choi, Won-Sub;Kim, Min-Ki;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.7-22
    • /
    • 2021
  • In this paper, we describe the results of the docking phase test in the ground environment of the rendezvous/docking technology verification satellite under development for the first time in Korea. rendezvous/docking technology is a high-level technology in space technology, which is also very important for accessing and performing tasks on relative objects in space orbit. In this paper, we describe the ground test results that the chaser finally docks the fixed target using an air bearing device. Based on the thrust control algorithm in the docking phase and the relative object recognition and relative distance estimation algorithm using visual-based sensors validated in this paper, we intend to use them for later expansion to rendezvous/docking algorithms in three-dimensional space for testing in space.

Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR (비정질 소듐 보레이트와 붕소를 함유한 다성분계 규산염 용융체의 붕소의 함량에 따른 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, A Chim;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.155-165
    • /
    • 2016
  • Understanding the effect of boron content on atomic structures of boron-bearing multicomponent silicate melts is essential to reveal the atomistic origins of diverse geochemical processes involving silica-rich magmas, such as explosive volcanic eruption. The detailed atomic environments around B and Al in boron-bearing complex aluminosilicate glasses yield atomistic insights into reactivity of nuclear waste glasses in contact with aqueous solutions. We report experimental results on the effect of boron content on the atomic structures of sodium borate glasses and boron-bearing multicomponent silicate melts [malinkoite ($NaBSiO_4$)-nepheline ($NaAlSiO_4$) pseudo-binary glasses] using the high-resolution solid-state NMR ($^{11}B$ and $^{27}Al$). The $^{11}B$ MAS NMR spectra of sodium borate glasses show that three-coodrinated boron ($^{[3]}B$) increases with increasing $B_2O_3$ content. While the spectra imply that the fraction of non-ring species decreases with decreasing boron content, peak position of the species is expected to vary with Na content. Therefore, the quantitative estimation of the fractions of the ring/non-ring species remains to be explored. The $^{11}B$ MAS NMR spectra of the glasses in the malinkoite-nepheline join show that four-coordinated boron ($^{[4]}B$) increases as $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$] increases while $^{[3]}B$ decreases. $^{27}Al$ MAS NMR spectra of the multicomponent glasses confirm that four-coordinated aluminum ($^{[4]}Al$) is dominant. It is also observed that a drastic decrease in the peak widths (full-width at half-maximum, FWHM) of $^{[4]}Al$ with an addition of boron ($X_{Ma}=0.25$) in nepheline glasses. This indicates a decrease in structural and topological disorder around $^{[4]}Al$ in the glasses with increasing boron content. The quantitative atomic environments around boron of both binary and multicomponent glasses were estimated from the simulation results of $^{11}B$ MAS NMR spectra, revealing complex-nonlinear variation of boron topology with varying composition. The current results can be potentially used to account for the structural origins of the change in macroscopic properties of boron-bearing oxide melts with varying boron content.

Application of The Dynamic Cone Penetrometer for Strength Estimation of Pavement Foundation (현장에서의 동적관입시험을 이용한 노상토의 지지력 평가연구)

  • An, Ji-Hwan;Yang, Sung-Lin;Park, Hee-Mun;Kwon, Su-Ahn
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.17-26
    • /
    • 2004
  • The in-situ California Bearing Ratio (CBR) test has been widely used for evaluating the subgrade condition in asphalt concrete pavements. However, because the in-situ CBR test is expensive and takes plenty of time for operation, it is very difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer (DCP) has been often utilized for estimating the subgrade strength in the field. The relationship between the CBR value and DCP index obtained from the DCP testing has been studied using the laboratory and in-situ testing by other foreign researchers. The objective of this study is to determine the relationship between in-situ CBR value and DCP index of the subgrade materials used in Korea. The DCP index for evaluating the strength of subgrade materials produced in Korea is presented in this paper. Research results propose the regression equation to explain the relationship between the CBR and DCP tests. The in-situ CBR values of subgrade materials range from 20 to 45% indicating the good and sound subgrade condition.

  • PDF

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Estimation of Angular Location and Directivity Compensation of Split-beam Acoustic Transducer for a 50 kHz Fish Sizing Echo Sounder (50 kHz 체장어군탐지기용 분할 빔 음향 변환기의 지향성 보정 및 위치각 추정)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.423-430
    • /
    • 2011
  • The most satisfactory split-beam transducer for fish sizing maintains a wide bearing angle region for correct fish tracking without interference from side lobes and lower sensitivity to fish echoes outside of the main lobe region to correctly measure the angular location of free-swimming fishes in the sound beam. To evaluate the performance of an experimentally developed 50 kHz split-beam transducer, the angular location of a target was derived from the electrical phase difference between the resultant signals for the pair of transducer quadrants in the horizontal and vertical planes consisting of 32 transducer elements. The electrical phase difference was calculated by cross-spectral density analysis for the signals from the pair of receiving transducer quadrants, and the directivity correction factor for a developed split-beam transducer was estimated as the fourth-order polynomial of the off-axis beam angle for the angular location of the target. The experimental results demonstrate that the distance between the acoustic centers for the pair of receiving transducer quadrants can be controlled to less than one wavelength by optimization with amplitude-weighting transformers, and a smaller center spacing provides a range of greater angular location for tracking of a fish target. In particular, a side lobe level of -25.2 dB and an intercenter spacing of $0.96\lambda$($\lambda$= wavelength) obtained in this study suggest that the angular location of fish targets distributing within a range of approximately ${\pm}28^{\circ}$ without interference from side lobes can be measured.

Single-axis Hardware in the Loop Experiment Verification of ADCS for Low Earth Orbit Cube-Satellite

  • Choi, Minkyu;Jang, Jooyoung;Yu, Sunkyoung;Kim, O-Jong;Shim, Hanjoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.195-203
    • /
    • 2017
  • A 2U cube satellite called SNUGLITE has been developed by GNSS Research Laboratory in Seoul National University. Its main mission is to perform actual operation by mounting dual-frequency global positioning system (GPS) receivers. Its scientific mission aims to observe space environments and collect data. It is essential for a cube satellite to control an Earth-oriented attitude for reliable and successful data transmission and reception. To this end, an attitude estimation and control algorithm, Attitude Determination and Control System (ADCS), has been implemented in the on-board computer (OBC) processor in real time. In this paper, the Extended Kalman Filter (EKF) was employed as the attitude estimation algorithm. For the attitude control technique, the Linear Quadratic Gaussian (LQG) was utilized. The algorithm was verified through the processor in the loop simulation (PILS) procedure. To validate the ADCS algorithm in the ground, the experimental verification via a single axis Hardware-in-the-loop simulation (HILS) was used due to the simplicity and cost effectiveness, rather than using the 3-axis HILS verification (Schwartz et al. 2003) with complex air-bearing mechanism design and high cost.